Example:

$$
k_{1}^{5}=s^{3} \quad\left[\begin{array}{ll}
5 & 1 \\
1 & 0
\end{array}\right]
$$

the linking matrix
diagonal entries are framings
ofo-diag. is linking of Ki_{i} with kj_{j}

Exercise: linking matrix is a presentation matrix for $H_{1}(Y)$
Recall: $K 1 \quad \mathscr{Z} \not \perp 0^{ \pm 1}$

$$
A \longrightarrow\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & \pm 1
\end{array}\right)
$$

clearly this doesint change H_{1}
$K 2:$ side k_{i} over K_{j} add (or subtract) $j^{\text {th }}$ row to the $i^{\text {th }}$ row and the $j^{\text {th }}$ column to the $i^{\text {th }}$ column Exercise: check that this \uparrow really happens

handieslide K_{1} over K_{2}

Framing is $3+1+2\left(\ln \left(K_{1}, K_{2}\right)\right)$

$$
\begin{aligned}
& =3+1+2(-1) \\
& =2
\end{aligned}
$$

isotope picture

So, $\left[\begin{array}{cc}3 & -1 \\ -1 & 1\end{array}\right] \xrightarrow{R_{1}+R_{2}}\left[\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right] \xrightarrow{C_{1}+C_{2}}\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Reversing orientation
Y surgery on framed link \mathcal{L} in S^{3}
Q: Surgery description for $-Y$?

- reverse vientation on link exterior
- framing n_{i} becomes - n_{i}

Example:

$$
y=\gg+1
$$

$$
-y=()^{-1}
$$

$$
-y=(\sim)
$$

change all crossing
$+1 \longmapsto-1$

$$
+1 \longmapsto-1
$$

Example:

$$
L(7,3) \quad-2 \quad 3
$$

cheek continued fraction:

$$
\frac{7}{3}=2-\frac{1}{-3}=[2,-3]
$$

$$
L(7,4) \quad-2 \quad-4
$$

$$
\frac{7}{4}=2-\frac{1}{4}=[2,4]
$$

Recall: $L(p, q)=-L(p, p-q)$
EVEN SURGERIES
A framed link \mathcal{Z} is even if all of it's framings are even.
Theorem:
Any closed oriented $3-m f d$ is surgery on an even link in S^{3}
Example:

Poincare homology sphere

proof uses kirby moves to eliminate the characteristic sublink
Consider linking matrix $A \bmod 2$
\rightarrow doesnit depend on orientation of link exercise: check this!

$$
\begin{aligned}
& A=\left(a_{i j}\right) \\
& A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1, n} \\
a_{2,2} \\
\vdots \\
a_{n, n}
\end{array}\right) \bmod 2
\end{aligned}
$$

Exercise: this system always has a solution
the characteristic sublink is a sublink of \mathcal{Z}

$$
\mathscr{y}^{\prime}=\left\{k_{i} \subset \mathscr{Z}: \quad x_{i}=1\right\}
$$

this always exists and is not unique if $\operatorname{det}(A)=0 \bmod 2$
Fact: \mathscr{L} is even \Longleftrightarrow it has an empty characteristic sublink.

Components of \mathscr{Z} are Ki
characteristic sublink is \mathcal{Z}^{\prime}

$$
\left(k_{i}, x_{i}\right) \quad x_{i}=1 \Longleftrightarrow k_{i} \subset \mathscr{L}^{\prime}
$$

Example:

$$
\begin{aligned}
& -3 \text { 1 } 105 \\
& A=\left[\begin{array}{ccc}
-3 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 5
\end{array}\right] \\
& A \bmod 2=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& \therefore\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

So the characteristic sublink is

Let's blow-down this component

$$
\underbrace{}_{-3} \sim \underbrace{}_{-4}
$$

Q: How do kirby moves affect characteristic sublink?

$$
\begin{aligned}
K 1: \mathscr{L} & \longmapsto \mathcal{L} \Perp O^{ \pm 1} \\
\mathcal{L}^{\prime} & \longmapsto \mathcal{L}^{\prime} \cup\left(K_{n+1}, 1\right)
\end{aligned}
$$

$K 2$: Slide K_{i} over K_{j} (adds $j^{\text {th }}$ row to $i^{\text {th }}$ row? $j^{\text {th }}$ col to $i^{\text {th }} \mathrm{col}$)
$\left(K_{k}, x_{k}\right) \quad k \neq i, j$ unchanged $]$ Exercise

$$
\left(K_{i}, x_{i}\right) \cup\left(K_{j}, x_{j}\right) \longmapsto\left(K_{i} \neq K_{j}, x_{i}\right) \cup\left(K_{j}, x_{i}+x_{j}\right)
$$

Observation:
If both K_{i} and K_{j} were characteristic, then sliding K_{i} over K_{j} results in $K_{i} \# K_{j}$ characteristic and K_{j} not
proof of theorem:
$Y=$ integral surgery on \mathcal{Z} in S^{3}
Let \mathcal{L}^{\prime} be a characteristic sublink.
Use K_{2} to reduce the number of components in \mathcal{Z}^{\prime}
\Rightarrow Can assume \mathcal{Z}^{\prime} consists of a single component K
1.) If K is unknotted (trivial)
blue $=$ in characteristic sublink \mathcal{L}^{\prime}

We can change framing on K to ± 1

We can change framing on K to II then blow down K

Exercise: Check that blow-down docs not create any new characteristic components
2.) If K is nontrivial, use Kirby moves to unknot K

See Saverier

CLOSED 4-MFDS (wnnected, oriented)
in dim 4, it matters if your manifold is smooth vS. topological We will primarily be interested in smooth 4-mfds

Fact: Any finitely presented group can occur as π_{1} of a smooth closed $4-\mathrm{mfa}$

There is no algorithm to tell if 2 finitely presented groups are isomorphic

We will primarily be interested in simply connected 4 -mfds.
Interesting invariant: INTERSECTION FORM
$X=$ closed, oriented, connected, simply connected

$$
H_{4}(x) \cong H^{\circ}(x) \cong \nVdash
$$

2 generators: $+1,-1$
a choice of generator corresponds to a choice
of orientation
Fundamental class $[x]=$ generator for $H_{y}(x)$

$$
\begin{aligned}
\pi_{1}(x)=0 \Rightarrow H_{1}(x)=0 & \Rightarrow H_{3}(x)=0 \\
& \rightarrow \text { P.D. } \neg
\end{aligned}
$$

Lemma
$H_{h}(x), H^{2}(x)$ are both torsion free
proof:
Universal coefficients theorem.

$$
H^{2}(X)=\operatorname{Hom}\left(H_{2}(X), \mathbb{Z}\right) \oplus E x+(\underbrace{H 1}_{0}(X), \mathbb{Z})
$$

$\Rightarrow H^{2}$ torsion free.
Poincare Duality $\Rightarrow H_{2}(x)=H^{2}(x)$ also torsion free.

Define: bilinear form
$Q_{x}: H^{2}(X) \otimes H^{2}(X)$ \qquad

$$
(a, b) \longmapsto\langle a \cup b,[x]\rangle
$$

This is called the intersection form of X

- It is symmetric
- Non-degenerate (follows from P.D.)
deft: A form is non-degenerate

$$
v \longmapsto\left(y \longmapsto Q_{x}(y, v)\right)
$$

is an isomorphism
$\Rightarrow Q_{x}$ as a matrix is invertible over \mathbb{Z}

$$
\therefore \quad \text { bet }= \pm 1 \text { (a unit) }
$$

this is called being unimodular
alternative Perspective:

$$
\text { PD: } H^{2}(x) \longrightarrow \underset{\text { isom. }}{\longrightarrow} H_{2}(x)
$$

$\alpha \in H_{2}(X)$ is represented by a smoothly embedded closed oriented surface $F_{\alpha} \subset X$ if

$$
\begin{aligned}
& i_{*}\left(\left[F_{\alpha}\right]\right)=\alpha \in H_{2}(X) \\
& \qquad i=\text { inclusion } \\
& {\left[F_{\alpha}\right] \in H_{2}(X) \text { fundamental class of } F_{\alpha}}
\end{aligned}
$$

Abuse notation and write $\left[F_{\alpha}\right]$ for $i_{\lambda}\left(\left[F_{\alpha}\right]\right)$
Lemma
X closed oriented smooth 4-mfd
Any class $\alpha \in H_{2}(X)$ can be represented by a smoothly embedded closed oriented surface F_{α}
proof: See Savelizv

X Smooth
$\alpha, \beta \in H_{2}(X)$ represented by F_{α} and F_{β}
We can perturb so that F_{α} and F_{β} meet transversely

We can perturb so that F_{α} and F_{β} meet transversely in finitely many points

$p_{i}=$ intersection points (signed)
$\varepsilon\left(p_{i}\right)=$ sign of p_{i}
compare $T_{p_{i}} F_{\alpha} \oplus T_{p_{i}} F_{\beta}$ to $T_{p i} X$

$$
\begin{aligned}
& Q_{x}^{\prime}: H_{2}(x) \otimes H_{2}(x) \longrightarrow \mathbb{Z} \\
&(\alpha, \beta) \longmapsto \alpha \cdot \beta=\sum_{i} \varepsilon\left(p_{i}\right)
\end{aligned}
$$

Lamina:
Q_{x}^{\prime} is well-defined and agrees w / Q_{x} in the sense that for $a, b \in H^{2}(x)$ and $\alpha=P D(a)$, $\beta=P \cdot D .(b)$, then

$$
\alpha \cdot \beta=\langle a \cup b,[x]\rangle=Q_{x}(a, b)
$$

proof: Bott-Ta section 6

From now on, we will use Q_{x} to refer to either /both of these forms.

Given a basis $\left\{e_{i}\right\}$ for $H_{2}(x)$, we will write Q_{x} as a matrix $e_{i} \cdot e_{j}$
as a maths ul. τ_{J}
Examples:

$$
\begin{aligned}
& H_{2}\left(S^{2} \times S^{2}\right)=\mathbb{Z} \oplus \mathbb{Z} \\
& \alpha=S^{2} \times\{x\} \quad \beta=\{y\} \times S^{2}
\end{aligned}
$$

How do these intersect?
Hyperbolic matrix:

$$
\begin{array}{ll}
\alpha \cdot \alpha=0 & \alpha \cdot \beta=1 \\
\beta \cdot \alpha=1 & \beta \cdot \beta=0
\end{array}
$$

Example:

$$
H_{2}\left(\mathbb{C} P^{2}\right)=\mathbb{Z}
$$

generated by $\mathbb{C} P^{\prime}$
intersection form $[+1]$

$$
\underbrace{+1} U_{s^{3}} D^{4}=\mathbb{C} P^{2}
$$

Example:

$$
H_{2}\left(\overline{\mathbb{C P}}^{2}\right)=\mathbb{Z}
$$

intersection form $[-1]$

$$
U_{S^{3}} D^{4}=\overline{\mathbb{C}} P^{2}
$$

Example:

$$
\begin{aligned}
& H_{2}\left(X_{1} \not X_{2}\right)=H_{1}(X) \oplus H_{2}(X) \\
& Q_{x_{1} \# x_{2}}=Q_{x_{1}} \oplus Q_{x_{2}} \\
& X=p \mathbb{C} p^{2} \oplus q \overline{\mathbb{C} p^{2}}
\end{aligned}
$$

Example:
Kümmer Surface

$$
K 3=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in C p^{3} \mid z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0\right\}
$$

Facts:
(1) Simply connected
(2) closed, oriented $4-\mathrm{mfd}$
(3) intersection form $Q_{k 3}=E_{8} \oplus E_{8} \oplus 3 H$

$$
E_{8}=\left[\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & 0 & & \\
1 & -2 & 1 & 1 & 0 & & 0 \\
0 & 1 & -2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 1 & 0 & 0 \\
& & 0 & 1 & -2 & 1 & 0 & 1 \\
0 & & 0 & 1 & -2 & 1 & 0 \\
& 0 & & 0 & 1 & -2 & 0 \\
& & & 0 & 1 & 0 & 0 & -2
\end{array}\right] \quad \text { linking matrix of }
$$

See Saveliev for description of <3
G it's a 22 -component framed link.
It's a surgery description
\rightarrow attach 2-hanales and resulting boundary is S_{3}^{3} attach B^{4} to get K_{3}

Closed $4-\mathrm{mfd} \longrightarrow$ unimodular integral intersection form (entries are integers)
A lattice is a finitely generated free Abelian group Let $Q: L \otimes L \longrightarrow \mathbb{Z} \rightarrow$ be unimodular, symm, bilin. from $L_{L}=$ lattice (think of $H_{2}(X)$)

Example:
intersection form of a cured $4-\mathrm{mfd}$

3 basic invariants of Q

1. rank

$$
r_{k} Q=r_{k} L=\operatorname{dim}_{\mathbb{R}}(L \otimes \mathbb{R})
$$

2. Signature
$\otimes \mathbb{R} \longrightarrow$ real symm. bilinear form which can be diagonalized (over \mathbb{R})
ie. \exists a basis $\left\{e_{i}\right\}$ sit.

$$
Q=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

$b_{+}=$\#positive λ_{i} 's
$b_{-}=\#$ negative $\lambda_{i}^{\prime} s$
signature $\sigma=\sigma(Q)=b_{+}-b_{-}$
Q is definite if b_{+}or b_{-}is zero.
Q is positive-definite if $b_{-}=0$
negative-definite if $b_{t}=0$
indefinte otherwise

Remark: rank; signature are invariants of Q over \mathbb{R}
3. type

Rae: type is an invariant of an integral from

When are two forms the same?
$Q_{i}: L_{i} \otimes L_{i} \longrightarrow \mathbb{Z}$
$Q_{1} \cong Q_{2}$ are isomorphic if there is

$$
\begin{aligned}
& \varphi: L_{1} \longrightarrow L_{2} \text { set. } \\
& L_{1} \otimes L_{1} \xrightarrow{\varphi \otimes \varphi} L_{2} \otimes L_{2} \\
& Q . \downharpoonleft 0 / Q_{2} \\
& \text { \# commutes. }
\end{aligned}
$$

rank, signature, and type are invariants of the isomorphism class of Q.
rank, signature, and type of 4 -mfd X are rank, signature, and type of Q_{x}.

