Two key Examples:
(1) $E_{8}=$ elnking matrix of this link:

exercise: check this is even, negative definite, and compute $\sigma\left(E_{8}\right)=-8$
(2) $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=$ limping from on $S^{2} \times S^{2}$ exercise: check it's even and indefinite check that $\sigma(H)=0$

Facts about unimodular, symmetric, bilinear integral forums
1.) Q is odd and indefinite

$$
\begin{aligned}
\Longrightarrow Q & \cong b_{+}(+1) \oplus b_{-}(-1) \\
& \cong\left[\begin{array}{ll|l}
+1 & & \\
\ddots & b_{+} \\
& & \\
& & -1 \\
& & \\
& & \\
& \\
\operatorname{rank} Q & =b_{+}+b_{-} \\
\sigma(Q) & =b_{+}-b_{-} \\
b_{+} & =\frac{r k Q+\sigma(Q)}{2} \quad b_{-}=\frac{r k Q-\sigma(Q)}{2}
\end{array}\right.
\end{aligned}
$$

2.) Q even $\Rightarrow \sigma(Q)=0 \bmod 8$
3.) Q even and indefinite
a) If $\sigma(Q) \leq 0$, then $Q \cong a \cdot E_{8} \oplus b \cdot H$
a) If $\sigma(Q) \leqslant 0$, then $Q \cong a \cdot E_{8} \oplus b \cdot H$
where $a=\frac{-\sigma(Q)}{8}=\frac{b_{-}-b_{1}}{8}$

$$
b=\frac{r k(Q)+\sigma(Q)}{2}=b_{+}
$$

b) If $\sigma(Q)>0$, then $Q \cong a \cdot E_{8} \oplus b \cdot H$ where $a=\frac{\sigma(Q)}{B}$

$$
b=\frac{r k Q-\sigma(Q)}{2}
$$

Upshot:
We understand indefinite forms quite well

Question: How much does the intersection form determine the 4-mfd?
Theorem: (whitehead)
If X_{1}, X_{2} are simply connected, closed, oriented 4 -mfads, then they are homotopy equivalent iff their intersection forms are isomorphic

Example:
$\mathbb{C} P^{2} \# \overline{\mathbb{C} P^{2}}$

$$
\text { odd, } \quad\left(\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right)
$$

$S^{2} \times S^{2}$
even, $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
\therefore not homotopy equivalent
Theorem (wall)
Let x_{1}, x_{2} be simply connected, closed, oriented, smooth 4 -meas. If their intersection forms are isomorphic, Then $\exists k \geq 0$ sit.

$$
X_{1} \# k\left(s^{2} \times s^{2}\right) \cong \underset{\text { differ }}{ } X_{2} \# k\left(s^{2} \times s^{2}\right)
$$

"stably differm or chic"
Rok:
\exists examples where $k \neq 0$ but as for as 1 know, it is open whether k ever needs to be >1.
"1 is enough?"
Example: (where $k \neq 0$)

$$
\begin{aligned}
& x_{1}=k 3 \# \overline{\mathbb{C} p^{2}} \\
& Q_{x_{1}}=2 E_{8} \oplus 3 H \oplus(-1) \\
& \quad r k\left(Q_{x_{1}}\right)=16+6+1=23 \\
& \sigma\left(Q_{x_{1}}\right)=-16-1=-17
\end{aligned}
$$

odd (not even)
indefinite

$$
\begin{aligned}
& b_{+}=3 \\
& b_{-}=20
\end{aligned}
$$

$$
\Rightarrow \text { odd +indefinite } \Rightarrow Q_{x_{1}} \cong 3(+1) \oplus 20(-1)
$$

another 4 -mfd $w / Q_{x_{1}}$ is $\quad 3 \mathbb{C} P^{2} \# 20 \overline{\mathbb{C} p^{2}}=x_{2}$
fact: Kronheimer-mrowka show that X_{1} and X_{2} are NOT differ using Donaldson polynomial

Rennath:
$K 3$ \#CP ${ }^{2}$ is in fact differ to $4 C P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ (exercise)

Question: Which forums can be realized as the intersection form of a $4-m f d$?

Theorem: (Rowhlin)
If X is a simply connected, closed, smooth, orient. 4-mfd with even intersection form, then

$$
\sigma(x) \equiv 0(\bmod 16)
$$

Example:
E8 does not arise as the intersection form of a simply connected, closed, smooth 4-mild
same with $E_{8} \oplus H$

* What if we relaxed smooth condition?

Theorem (Freedman)
Given a unimodular, symmetric, bilinear integral form which is even, then there exists up to homed exactly one simply won. closed topological y-mfd representing
one simply won．closed topological y－mfd representing that form．

If odd，there are exactly two top－4－mfas reping that form．

In the odd case，one of those topological 4 －miens never admits a smooth stmeture．

Corollary
If x_{1}, x_{2} are closed，simply connected，smooth 4－mfas with $Q_{x_{1}} \cong Q x_{2}$ then X_{1} and X_{2} are homeomorphic

Ex：
$K 3 \# \overline{C P^{2}} \simeq$ homed $3 C P^{2} \# 20 \overline{C P^{2}}$
but

$$
K 3 \# \overline{C P^{2}} ⿻ 丷 ⿻ 二 丨 䒑_{\text {differ }} 3 C D^{2} \# 20 \overline{\mathbb{C} P^{2}}
$$

these are what we call an exotic pair

$$
11
$$

defin：manifolds that are homes but not differ

Ex：
\exists a simply connected，closed topological 4 －mid X with $Q_{x}=E_{8}$
X cannot be smooth by Rokhlin＇s theorem
Corollary
If a topological $4-\mathrm{mfd} X$ is homotopy equivalent to S^{4} then it has to be homeomorphic to S^{4}
"Topological 4-dim Paincaré Conjecture"

Smooth Y-dim Poincare Conjecture (open)
Every smooth 4 -mfd which is homed to S^{4} is in fact differ to SY

Theorem (Donaldson)
If the intersection form is positive definite, then the form is isomorphic over $\mathbb{\#}$ to $(+1)$'s along the diagonal.

11
11
11 negative definite, $\cdots \quad(-1)^{\prime} s$

Remarks: the number of positive-definite unimodular symm, unimodular bilinear forms of a fixed sank is finite, but grows rapidly

Ex: $>10^{51}$ such forms of rank 40
Donaldson says that only the diagonalizable ones are realized as Q_{X} for Δ mouth X

Theorem (Furata)
If the intersection form Q of a smooth, simply conn closed, oriented $4-\mathrm{mfol}$ is even, then

$$
r k Q>\frac{10}{8}|\sigma(Q)|
$$

Note: If even, indefinite
$Q_{x} \cong a E_{8} \oplus b H$ then

$$
\begin{aligned}
& \sigma\left(Q_{x}\right)=-8 a \\
& r k\left(Q_{x}\right)=8 a+2 b
\end{aligned}
$$

so Furuta implies $8 a+2 b>\frac{10}{8} \cdot 8 a$

$$
b>a
$$

$11 / 8^{\text {tn's }}$ conjecture:
Hypothesis as above:

$$
r k Q \geqslant \frac{11}{8}|\sigma(Q)|
$$

Ex: $\quad k 3$

$$
\begin{aligned}
& r k Q_{k 3}=22 \\
& \left|\sigma\left(Q_{k 3}\right)\right|=16
\end{aligned}
$$

So far, we've described some smooth closed 4-mfas as

$$
B^{4} \cup n(2-h)^{\prime} \cup \cup B^{4}
$$

resulting boundary $=S^{3}$
But not all $4-m$ fas admit such a description.
Q: is there a general way to describe a closed $4-\mathrm{mf}$?
answer: yes. as a union of handles

Handle Decomposition:
n-dim k-handle $D^{k} \times D^{n-k}$
attacked along the attacking region $\left(2 D^{k}\right) \times D^{n-k}$
attaching sphere $\left(2 D^{k}\right) \times\{0\}$
core

$$
D^{k} \times\{0\}
$$

co-core

$$
\{0\} \times D^{n-k}
$$

belt-sphere

$$
\{0\} \times 2 D^{n-k}
$$

EXercise: think about what it mould look like for other n and k.

Exercise: An integral form Q_{x} is even

$$
Q\left(e_{i}, e_{i}\right) \equiv 0 \bmod z
$$

for every basis $\left\{e_{i}\right\}$
every matrix representing Q has even diagonal $Q($ ei,ei $) \equiv 0(\bmod 2)$ for at least one basis \exists at least 1 matrix representation Q
\exists at least 1 matrix representation Q where diagonal is even

Example: n-dim 0 -handle

$$
\begin{gathered}
D^{0} \times D^{n} \\
\text { attading region }=\varnothing
\end{gathered}
$$

A handle decomposition of smooth m^{n} is a description of m by attaching handles

Example:

Example:

\cup
1-handle

2-hanale

Theorem
Every smooth compact manifold admits a handle decomposition
prof: morse theory: critical point of index $k \leadsto k$-handle
SURFACES:

T^{2}

Can visualize:

can visuauze.

Exercise: Find a handle decomposition for any closed oriented Surface

Heegaard splittings/diagrams
a-handlebody

$$
\begin{aligned}
& g(2-h)^{\prime} s \\
& 1(3-h)
\end{aligned}
$$

(by flipping factors can think of this as same as left picture)

$$
\Sigma=\partial(\alpha \text {-handlebody })=\partial(\beta \text {-handlebody })
$$

$$
\begin{aligned}
& \alpha \text {-curves }=\text { belt spheres of }(1-h) \text { 's } \\
& \alpha \text {-disks }=\text { co-cores of }(1-h)^{\prime} s \\
& \beta \text {-curves }=\text { attaching sphere of }(2-h)^{\prime} s \\
& \beta \text {-disks }=\text { cores of }(2-h)^{\prime} s
\end{aligned}
$$

Example:

belt sphere of 1-handle
glue in 2-handle along blue

New boundary is S^{2}
I attach 3-h to this and gives S^{3}

Conclusion:
Heegaard diagrams give us handle decompositions.

Proposition
We can always isotope the attaching maps so handles are attached in order of increasing index. Handles of the same index can be attached in any order (or Simultaneously.
proof: Gompf ; Stipsicz prop 4.2.7
Proposition
If m^{n} is compact and connreted, then it admits a handle deems. with exactly $1(0-h)$.

If $M^{\prime \prime}$ is compact and connected, then it admits a handle decomp. with exactly $1(0-h)$.
If $2 m \neq \phi$, we can diso assume there is exactly 1 n-handle
proof: Gompf i Stipsicz Prop 4.2 .13

Note:

1) Can turn a handle decomp. "upside down" n-dim k-handle $\leadsto(n-k)$-handle

Example:

cores and cocores swap
attaching regions in red
2.) Can create "cancelling" pairs of handles $(k-1)$ handle and k-handle $1 \leqslant k \leqslant n$
ex:

3-dim 2-handle and a 3 -handle:

In general, we can do this:

m^{n} boundary sum = connect sum the boundaries

$$
\begin{aligned}
& m^{n} \upharpoonleft D_{11}^{n} \\
& D^{k} \times D^{n-k} \\
& 2 D^{k}=S^{k-1}=D_{+}^{k-1} \cup D_{-}^{k-1}
\end{aligned}
$$

II
Slice off a nbhd of D_{+}^{k-1}

(k-1)-handie is $D_{+}^{k-1} \times D^{1} \times D^{n-k}$ attached to $2 m$ cancelling k-handle $D_{0}^{k} \times D^{n-k}$

Proposition
A $(k-1)$ handle h_{k-1} and a k-handle h_{k} can be cancelled provided the attaching sphere of h_{k} intersects the bert sphere of h_{k-1} transversely in a single point.
proof: Ciompf ; Stipsicz Prop 4.2.9

Example:
 attaching sphere belt sphere

Example:

Ex: in 3-dim:

belt sphere 1-h attaching sphere $2-h$

1-, 2-cancelling pair

2-, 3-cancelling pair
Exercise:
Show that destab of a Heegaard diagram is a $1-, 2$ - cancelling pair

DIMENSION 3: HEEGAARD DIAGRAMS

Unique $0-, 3$ - handle
$2 D^{3}=S^{2}=\mathbb{R}^{2} \cup\{\infty\}$ (think of paper as \mathbb{R}^{2})
attaching region of 1 -handles $\quad\left(\partial D^{1}\right) \times D^{2}=D^{2} \Perp D^{2}$
attaching spheres of 2 -handles $\left(\partial D^{2}\right) \times\{0\}$

If resulting boundary is S^{2}, attach a 3 -handle to get a closed $3-\mathrm{mfd}$.
to see its $\mathbb{R P}^{3}$, 100k at toms:

