Week 7, 10/3 and 10/5
Tuesday, October 3, 2023
12:29 PM

can flip upside down:

0-1
cancelling pair

Example:

\leftarrow Hanaleboty decomposition

$$
\text { of a } 3-\mathrm{mfd}
$$

Can think of this as being

this gives a genus 2 Hetgaard splitting of some 3-mfd
Example: $\quad T^{2}=S^{1} \times S^{1}$

$$
\begin{aligned}
S^{\prime}=\{ & =(0-h) \cup(1-h) \\
& =\underbrace{D_{-}^{\prime}}_{0-h} \cup \underbrace{D_{+}^{\prime}}_{i-h} \\
S^{\prime} \times S^{\prime} & =\left(D_{-}^{\prime} \cup D_{+}^{\prime}\right) \times\left(D_{-}^{\prime} \cup D_{+}^{\prime}\right) \\
& =D_{-}^{\prime} \times\left(D_{-}^{\prime} \cup D_{+}^{\prime}\right) \cup\left(D_{+}^{\prime}\right) \times\left(D_{-}^{\prime} \cup D_{+}^{\prime}\right) \\
& =\underbrace{\left.D_{-}^{\prime} \times D_{-}^{\prime}\right) \cup(\underbrace{D_{-}^{\prime} \times D_{+}^{\prime}}_{1-h}) \cup(\underbrace{D_{+}^{\prime} \times D_{-}^{\prime}}_{1-h}) \cup(\underbrace{D_{+}^{\prime} \times D_{+}^{\prime}}_{2-h})}_{0-h}
\end{aligned}
$$

How are they attached to one another?
think of $\int_{0-h}^{1-h} \times D_{-}^{\prime}$ as
thickened $(0-h) \cup(1-h)$
the other one is like

can redraw disk as being a half-plane

Example: $\quad T^{3}=S^{\prime} \times S^{\prime} \times S^{\prime}$

$$
\begin{aligned}
& T^{2}=(0-h) \cup(1-h) \cup(1-h) \cup(2-h) \\
& S^{\prime}=(0-h) \cup(1-h) \\
& T^{2} \times S^{\prime}=(0-h) \cup(1-h) \cup(1-h) \cup(1-h) \cup(2-h) \cup(2-h) \cup(2-h) \cup(3-h)
\end{aligned}
$$

Crossing with 0 -h is like crossing
 with interval
thicken:

send back " C " to ∞

(c)
(A)

\% add another 2-handie

Exercise:
Find a handle delomp. for $\Sigma g \times S^{\prime}$

Unique 0 -handle $D^{4}, \quad 2 D^{4}=S^{3}=\mathbb{R}^{3} u\{\infty\}$
from now on we just draw boundary; attaching region
The attaching region for 1 handles $=\left(\partial D^{\prime}\right) \times D^{3}=D^{3} \Perp D^{3}$

Attaching sphere for 2 -handles $=\left(\partial D^{2}\right) \times\{0\}=S^{\prime} \times\{0\}$

Attaching sphere for 2 -handles $=\left(\partial D^{2}\right) \times\{0\}=S^{\prime} \times\{0\}$ and need to specify a framing

What about the 3- and 4-handles?
In a closed 4-mfd, we can assume there is one 4 -handle
Duality gives us that the union of the 3 - and 4 -handles will be 0 -h u some $(1-h)$'s which is $q_{m} S^{1} \times D^{3}$

$$
m=\# \text { of } 3 \text {-handles }
$$

$$
\begin{aligned}
& \partial\left(\underset{m}{4} S^{1} \times D^{3}\right)=\underset{m}{\#} S^{1} \times S^{2} \\
& \quad \Rightarrow \partial \text { (union of } 0-1-1 \text {, and } 2 \text {-handles) }=\underset{m}{\#} S^{1} \times S^{2}
\end{aligned}
$$

Theorem (Landebach-Poénarm)
Any self-diffee of $\#_{m}^{\#} s^{\prime} \times s^{2}$ extends over $4 s^{1} \times D^{3}$
Consequences:
1.) Need boundary of $(0-h) \cup(1-h)^{\prime} s \cup(2-h)^{\prime} s$ to be $\# s^{\prime} \times s^{2}$
2.) We don't need to specify the 3-or 4 -handles (multiple ways of attaching gives us the same $4-m f d$)

Example:

Note:

troublesome: isotopy gives up that
equivalent to above

Framings of 2 -handles that go over a 1-hanale have an ambiguity.

Remark: Late, we will describe a way to resolve this ambiguity

Example:

$$
\begin{aligned}
S^{3} \times S^{1} \quad S^{3} & =0-h \cup 3-h \\
S^{\prime} & =0-h \cup 1-h \\
S^{3} \times S^{1}=0-h & \cup 1-h \cup 3-h \cup 4-h
\end{aligned}
$$

$$
\because \quad v(3-h) v(4-h)
$$

Example:

$$
\begin{aligned}
& \mathbb{R} P^{3} \times S^{1} \\
& \mathbb{R} P^{3}=0-h \cup 1-h \cup 2-h \cup 3-h \\
& S^{1}=0-h \cup 1-h
\end{aligned}
$$

$$
R P^{3} \times S^{\prime}=(0-h) \cup 2(1-h)^{\prime} s \cup 2(2-h)^{\prime} s \cup 2(3-h)^{\prime} s \cup(4-h)
$$

add another one handle

Doubles:
M^{n} mfd with boundary. Can form the double of m

$$
D m=\partial(I \times m)=m v_{i d_{\partial}}-m
$$

Ex: $D D^{n}=S^{n}$
Ex: $D\left(\Sigma_{g}-D^{2}\right)=\Sigma_{2 g}$
Ex: $\quad D H_{g}=\# \underset{g}{\#} S^{2} \times S^{\prime}$

(A)
(A)
(B)
(B)
(g)
(g)

Ex: $\quad X=4$-mfd with no 3 -or 4 -handles
$D X=X \cup$ handles
each $2-h$ of $X \leadsto$ new $2-h$
each $1-h$ of $x \leadsto$ new $3-h$

$$
0-h \text { of } x \leadsto y-h
$$

Sufficient to understand up to $(2-h)$ s

- each new α-handle h^{\prime} is a copy of an old z-handle h with core and cocore interchanged h^{\prime} attached to ∂X along bet t sphere of h
attaching sphere for h^{\prime} is

see Ex. 4.6.3 of Gompf and Stipsicz for the framing explanation.
\Rightarrow double $D X$ of X is obtained by adding a O-framed meridian to each 2 -handle of X, then attaching 3 and 4 -handles.

Examples:

$$
0
$$

$$
\left(S^{2} \times D^{2}\right) \cup\left(S^{2} \times D^{2}\right)
$$

$$
(1)\left(5^{-\times ワ) \cup v(\nu \sim v)}\right.
$$

exercise: How are they identified?

$$
D_{1} \times D^{2} \sim f D_{2} \times D^{2}
$$

swaps the factors (fiber \longleftrightarrow base)
lower dimensional analog: plumbing

plumbing:

boundary has matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

so 2 must be s^{3}
So this is $S^{2} \times S^{2}$.

Example:

$$
\mathbb{R} P^{3} \times S^{1}
$$

Ex: Y-mfd X with boundary X

Exercise: Given a Kirby diagram for a $4-m \rho d$, find a presentation for $\pi,(X)$

Question: Can we read off the intersection form of a 4-mfd from a handle decomposition / Kirby diagram?

Remark: Smooth 4-mfds with boundary have an intersection form
$Q_{x}: H_{2}(X) \otimes H_{2}(X) \longrightarrow \mathbb{Z}$

$$
(a, b) \longmapsto a \cdot b
$$

signed count of intersection points between Sm.
points between urn.
surfaces representing a and b
-symmetric, integral, bilinear form.

- cant do Poincare duality in the same way when x is not closed $\longrightarrow Q_{x}$ need not be unimodular

Example:

$$
S^{2} \times D^{2} \quad Q_{x}=0
$$

Let R be a ring
An R-homology sphere m^{n} is a manifold with

$$
H_{*}\left(m^{n} ; R\right)=H_{*}\left(s^{n} ; R\right)
$$

We will mostly care about $R=\mathbb{Z}$ and $n=3$ integer homology sphere)
Ex: S^{3} is the simplest example of an $\mathbb{Z} \mathbb{H}^{3}$
Ex: Poincare Homology sphere

$$
S_{-1}^{3}(\Omega) \quad \sum(2,3,5)
$$

Ex: \#'s sums of these

$$
{\underset{(a n d}{ }}_{\sum}^{\sum(\underbrace{p, q, r)}_{\text {rel. prime }})}
$$

Ex: $S_{1 / n}^{3}(K) \quad \forall n \in \mathbb{Z}$ and any knot K
Ex: $\int_{p / q}^{3}(K) \underset{\substack{p \not p \neq 0 \\ p \neq 0}}{p}$ is a $\mathbb{Q} H_{*} S^{3}$ is a
rational homology sphere but not an $\mathbb{Z} S^{3}$.

Exercise: X a 4 -mfd with boundary.
Q_{x} is unimodular $\Longleftrightarrow \partial X$ is a disjoint union of $\mathbb{Z H S}^{3}$ /s

Theorem:
Let x be a $4-\mathrm{mfd}$ with no 1 or 3 handles, described by a framed link \mathcal{L}. Then

$$
Q_{x}=\text { linking matrix }
$$

proof idea:
Consider $X_{n}(K)=n$-trace of K
take n-framed 2 -hanale attached to K
Generator for $H_{2}\left(X_{n}(K)\right): \hat{F}$
take Seifert surface F for K
$\hat{F}=\left(F\right.$ pushed into $\left.B^{4}\right) \cup($ core of $z-h)$
What is $\hat{F} \cdot \hat{F}$?

Exercise: $\quad \hat{F} \cdot \hat{F}^{\prime}=n$

The parallel copy of core intersects S^{3} in K^{\prime} having framing n means ll $\left(K, K^{\prime}\right)=n$

Idea: $\operatorname{lk}\left(K, K^{\prime}\right)=n=F \cdot K^{\prime}$ in S^{3}

Now for a framed link:
n_{i} framed $K_{i} \leadsto \hat{F}_{i}$
$i=j: \hat{F}_{i} \cdot \hat{F}_{i}=n_{i}$ as before
$i \neq j$: Assume \hat{F}_{j} deeper in B^{4} than \hat{F}_{i} ie. $\hat{F}_{i} \cap B^{4}$ lives in a collar $I \times S^{3}$ of ∂B^{3}
\hat{F}_{j} vertical in this collar

$$
\partial B^{4}
$$

$\hat{F}_{j} \cap B^{4}=I \times K_{j}$

$$
\hat{F}_{i} \cdot \hat{F}_{j}=F_{i} \cdot K_{j}=\operatorname{lk}\left(K_{i}, K_{j}\right)
$$

Example:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Ex: $E_{8}=2_{-2}^{-2-2-2-2-2} 0^{-2}$
Simply connected 4 -mfd X whose 2 is Poincare Homology sphere and has intersection form $Q_{x}=E_{8}$
plumbing of D^{2}-bundles over S^{2}
Ex:

D^{2} bundle over s^{2}

Ex:

$$
Q_{x}=[5]
$$

$$
D x=Q_{5} Q_{0(4-n)}=\left[\begin{array}{ll}
5 & 1 \\
1 & 0
\end{array}\right]
$$

Q: When do two Kirby diagrams represent the same 4-mfd?
A: KIRBY CALCULUS

Theorem: (Cerf)
Given any two handle decompositions for a compact mfd M^{n}, it's possiote to get from one to another by a sequence of handleslides, creating/annihilating camelling pairs of handles, and isotopies (within levels)
proof:
1-parameter families of morse functions.

Compare to Heegaard moves (isotopies, handleslides, stabilization/destabilization)

Cancelling Pairs:
$(k-1)$-handle h_{k-1}
k-handle h_{k}
attaching sphere of h_{k} intersects belt sphere of h_{k-1} transversely at a single point

Haudleolide:
two k-handles $h_{1}, h_{2}{ }^{v}(0<k<n)$ attached to $2 X$
A hanaleslide of h_{1} over h_{2}

- isotope attaching sphere A of h_{1} in $\partial\left(X \cup h_{2}\right)$ pushing it across belt sphere B of h_{2}
Example (dim. 2):

A

Can use double strand notation to keep track of the framing!

