

4-dim 2-handle slide:

slide K, over K2

Example:

change of basis induced by handleslide

 d_1 , d_2 was canonical basis for $H_2(X)$. New framing on K_1 is $\left(d_1 \pm d_2\right)^2 = d_1^2 + d_2^2 \pm 2\alpha_1 \cdot \alpha_2$

given by given by

framing

on k,

on k,

Example:

Example:

Example: (Exercise - check this I slide at a time)

handleslide both strands over

Example:

handlestide

Can always adjust by ±2

Note:

Nothing else gues through Kz geometrically

Proposition

Let X^4 be given by a Kirby diagram. Suppose K, and Kz are attaching circles such that K, lies entirely in ∂D^4 and Kz is a 0-framed meridian of K, Then X = X' # S

where X' is obtained from X by evaling K_1 and K_2 and $S = S^2 \times S^2$ if framing coeff. n_1 of K_1 is even and $S = CP^2 \# \overline{CP^2}$ otherwise

Use 0-framed meridian to bring K, and Kz entirely to the front. Want to slide over Kz:

Then, unknot K,

Self-crossing of K,
framing changes by 2

n even: this is $S^2 \times S^2$

n odd: this is Cp2 # Cp2

Comilary

Let X^4 be given by a Kirby diagram without 1-handles and with odd intersection from. Then $X \# S^2 \times S^2$ and $X \# \mathbb{CP}^2 \# \mathbb{CP}^2$ are diffeomorphic

Danat:

old intersection form => Kirby diagram has a component

Covollary

Let X4 consist of a 0-h and m 2-handles. Then the double

$$DX \cong \begin{cases} \#_{m} S^{2} \times S^{2} & \text{if } Q_{x} \text{ even} \\ \#_{m} CP^{2} \#_{m} CP^{2} & \text{if } Q_{x} \text{ odd} \end{cases}$$

In particular, if X is a closed 4-mfd without 1-or 3-handles, then X#X admits such a connected sum splitting.

Open Question:

Does every simply-connected closed 4-mfd admit a handle decomposition without 1- or 3- handles?

Weaker: " without 1- handles?

Handle cancellation:

(k-1) handle h_{k-1} and a k-handle h_k can cancel if attaching sphere of h_k intersects belt sphere of h_{k-1} in a single point (regardless of framings)

Example: 3-dim 1/2 cancelling pair

Example: 4-dim 1/2 concelling pair

