Week 8, 10/12
Thursday, October 12, 2023

Ex:

Example: (picturing 3-dim hanaleslide)
(A)
(H)
(B)

Example: (picturing 4-dim handleslide)

4-dim 2-hanale slide :
slide K_{1} over K_{2}
Example:

Recall: $\square_{11}^{1}=1 /$
change of basis induced by handleslide

α_{1}, α_{2} was canonical basis for $H_{2}(x)$. New framing on K_{1}^{\prime} is

$$
\left(\alpha_{1} \pm \alpha_{2}\right)^{2}=\alpha_{1}^{2}+\alpha_{2}^{2} \pm 2 \alpha_{1} \cdot \alpha_{2}
$$

Example:

adding a band

Example:

Example: (Exercise-check this 1 slide at a time)

Example:

Can always adjust by ± 2
Note:
Nothing else goes through K_{2} geometrically
Proposition
Let X^{4} be given by a Kirby diagram.
Suppose K_{1} and K_{2} are attaching circles such that K_{1} lies entirely in ∂D^{4} and K_{2} is a O-framed meridian of K_{1}

Then $\quad X=X^{\prime} \# S$
where X^{\prime} is obtained from X by erasing K_{1} and K_{2} and $S=S^{2} \times S^{2}$ if framing coeff. n_{1} of K_{1} is even and

$$
S=\mathbb{C} p^{2} \# \mathbb{C}{p^{2}}^{\text {otherwise }}
$$

proof:

Use 0 -framed meridian to bring K_{1} and K_{2} entirely to the front. Want to slide over K_{2} :

Then, unknot K_{1}
Self-crossing of $K_{1} \leadsto$ framing changes by 2

$$
n \equiv n(\bmod z)
$$

n even : this is $S^{2} \times S^{2}$
n odd : this is $\mathbb{C} P^{2} \# \overline{\mathbb{C}} P^{2}$

Corollary
Let X^{4} be given by a Kirby diagram without 1-hanales and with odd intersection form. Then $X \# S^{2} \times S^{2}$ and $X \# \mathbb{C} P^{2} \# \overline{\mathbb{C P}}^{2}$ are diffeomorphic
proof:
odd intersection form \Rightarrow Kirby diagram has a component
K with odd framing

corollary
Let X^{4} consist of $a \operatorname{O-h}$ and m-handles. Then the double

$$
D X \cong \begin{array}{ll}
\#_{m} S^{2} \times S^{2} & \text { if } Q_{x} \text { even } \\
\#_{m} \mathbb{C} P^{2} \# \overline{C P^{2}} & \text { if } Q_{x} \text { odd }
\end{array}
$$

In particular, if X is a closed 4 -mfd without 1-or 3handles, then $X \# \bar{X}$ admits such a connected sum splitting.

Open Question:
Does every simply-connected closed 4-mfd admit a handle decomposition without 1- or 3- handles?
weaker: 11 "without 1- handles?

Handle cancellation:
(k-1) handle h_{k-1} and a k-handle h_{k} can cancel if attaching sphere of h_{k} intersects belt sphere of h_{k-1} in a single point (regardless of framings)

Example: 3-dim $1 / 2$ cancelling $p a i r$

(A) attaching sphere of 1 -handle
belt sphere of 2 -handle

Example: 4-dim 1/2 cancelling pair

