		· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
		· · · · ·	· · ·			· · ·		
2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2		· · · ·	· · ·			· · ·		
2 2 1 pg 11 1		· · · ·	· · ·			· · ·		
		· · · ·	· ·			• •		
pg II	· ·	· · · ·	· ·		•		 •	· ·
pg II								
							-	
0								
		• • •						
		• • •						
				-				
		· · · ·	· ·	• •				
		· · · ·	· ·	• •		• •		

This an C-space knot if I tool of EX: positive torus knots are L-space If k is an L-space knot, then CFK by $\Delta_k(t)$ EX: $K = T_{4,5}$ $\Delta_k(t) = t^6 - t^5 + t^2 - 1 + t^2 - t^{-5} + t$ generators: xo, x ₁ ,, x. $\partial_{x_0} = \partial_{x_2} = \partial_{x_4} = \partial_{x_6}$ $\partial_{x_1} = U_{x_6} + V_{x_2}^3$ $\partial_{x_3} = U_{x_2}^2 + V_{x_4}^2$ $\partial_{x_5} = U_{x_4}^3 + V_{x_6}$	K(K) is (K) is fference of edifference	determin each termin poly is a g	enerator
Expositive torus knots are L-space If K is an L-space knot, then CFK by $\Delta_{k}(t)$ Ex: $K = T_{4,5}$ $\Delta_{k}(t) = t^{b} - t^{5} + t^{2} - 1 + t^{2} - t^{-5} + t$ generators: $x_{0}, x_{1},, x_{n}$ $\partial x_{0} = \partial x_{2} = \partial x_{4} = \partial x_{0}$ $\partial x_{1} = U x_{0} + V^{3} x_{2}$ $\partial x_{3} = U^{2} x_{2} + V^{2} x_{4}$ $\partial x_{5} = U^{3} x_{4} + V x_{6}$	Kenots (K) is fference of edifference	determin each termi poly is a g	rd in Clex enerator
If k is an L-space knot, then CFK by $\Delta_k(t)$ $E_X: K = T_{4,5}$ $\Delta_k(t) = t^6 - t^5 + t^2 - 1 + t^2 - t^{-5} + t$ generators: xo, x ₁ ,, x. $\partial x_0 = \partial x_2 = \partial x_4 = \partial x_6$ $\partial x_1 = U_{X_0} + V_{X_2}^3$ $\partial x_3 = U_{X_2}^2 + V_{X_4}^2$ $\partial x_5 = U_{X_4}^3 + V_{X_6}^3$	r (K) is -6 fference og = difference	determin each tourni poly is a g	enerator
Ex: $K = T_{4,5}$ $\Delta_{\kappa}(t) = t^{\flat} - t^{5} + t^{2} - 1 + t^{2} - t^{-5} + t$ generators: $x_{0}, x_{1},, x_{n}$ $\partial x_{0} = \partial x_{2} = \partial x_{4} = \partial x_{0}$ $\partial x_{1} = U x_{0} + V^{3} x_{2}$ $\partial x_{1} = U x_{0} + V^{3} x_{2}$ $\partial x_{3} = U^{2} x_{2} + V^{2} x_{4}$ $\partial x_{5} = U^{3} x_{4} + V x_{0}$	- 6. fference oz e difference wa	each terun i poly is a g	in Alex enerator
$\Delta_{k}(t) = t^{b} - t^{5} + t^{2} - 1 + t^{2} - t^{-5} + t$ generators x ₀ , x ₁ ,, x ₀ $\partial x_{0} = \partial x_{2} = \partial x_{4} = \partial x_{0}$ $\partial x_{1} = \mathcal{U} x_{0} + \sqrt{3} x_{2}$ $\partial x_{3} = \mathcal{U}^{2} x_{2} + \sqrt{2} x_{4}$ $\partial x_{5} = \mathcal{U}^{3} x_{4} + \sqrt{3} x_{0}$	fterence of edifference	each termi	in alex enerator
generators: xo, χ_1, \dots, χ_n $\partial x_0 = \partial x_2 = \partial x_4 = \partial x_6$ $\partial x_1 = \mathcal{U} x_0 + \sqrt{3} x_2$ $\partial x_3 = \mathcal{U}^2 x_2 + \sqrt{2}^2 x_4$ $\partial x_5 = \mathcal{U}^3 x_4 + \sqrt{2} x_6$	fterence oz = difference	6 and 5	
$\partial x_{0} = \partial x_{2} = \partial x_{4} = \partial x_{6}$ $\partial x_{1} = \mathcal{U} x_{0} + \sqrt{3} x_{2}$ $\partial x_{3} = \mathcal{U}^{2} x_{2} + \sqrt{2} x_{4}$ $\partial x_{5} = \mathcal{U}^{3} x_{4} + \sqrt{3} x_{6}$	fference oz = difference	6 and 5	
$\partial x_{1} = \mathcal{U} x_{0} + \sqrt{3} x_{2}$ $\partial x_{3} = \mathcal{U}^{2} x_{2} + \sqrt{2} x_{4}$ $\partial x_{5} = \mathcal{U}^{3} x_{4} + \sqrt{3} x_{6}$	= difference		
$a \times_{3} = \mathcal{U}^{2} \times_{2} + \mathcal{V}^{2} \times_{4}$ $a \times_{5} = \mathcal{U}^{3} \times_{4} + \mathcal{V} \times_{6}$	= difference		
$\partial x_5 = U^3 x_4 + V x_6$		e of 5 and	X , Z,
		2	
	U, V expe	opents give	en by
dif	ference in	exponents	in dki
ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν			
Vent ×3			
$\chi_2 \qquad \chi^2 $			
X = X = X = X = X = X = X = X = X = X =			

More concordance homomorphisms Theorem (Dai-H-Stoffregen-Truong) For each k & Z, there exists PK: C-> Z Moreover, Q How are the fx defined? exponents on V in same dir $E_X : K = T_{4,5}$ (an record the path x. to x. from above by (1,-3,2,-2,3,-1) which are the signed exponents in path from exponents on U to to X6 w] oppossing direction of path 2,1 cable of thefoil Ex. K = T2,3;2,1 $\partial_{X_{\infty}} = 0$ $2x_1 = UX_0 + V^2 x_2 + UV x_4$ $\partial x_2 = U x_3$ $\partial X_3 = 0$ dxy = Vx3 still have path alternating U's $\partial x_5 = \mathcal{U}^2_{Xy} + \mathcal{U}^Y_{Xy} + \mathcal{V}_{Xy}$, and Vis (1,-2,-1,1,2,-1) sequence $\partial x_{0} = 0$

Q' From a sequence, can we get a chain complex? Example: (1,-3,2,-2,3,-1) given sequence, get generators $\begin{array}{c} u \\ \times_{5} \\ \times_{2} \\ \times_{2} \\ \times_{2} \\ \times_{4} \\ \times_{4} \\ \times_{4} \\ \times_{4} \\ \times_{4} \\ \times_{5} \\ \times_{$ $X_{\circ} \xleftarrow{u} X_{1} \xrightarrow{\sqrt{3}} X_{2} \xleftarrow{u^{2}} X_{3} \xrightarrow{\sqrt{2}} X_{4} \xleftarrow{u^{3}} X_{5} \xrightarrow{\sqrt{2}} X_{6}$ Example: (1, -2, -1, 1, 2, -1) $\chi_{\circ} \xleftarrow{u}_{\chi_{1}} \xrightarrow{V^{2}}_{\chi_{2}} \xrightarrow{u}_{\chi_{3}} \xleftarrow{v}_{\chi_{4}} \xleftarrow{u^{2}}_{\chi_{5}} \xrightarrow{v}_{\chi_{\circ}}$ $\partial^2 \neq 0$ $\partial^2 x_1 = \partial (\mathcal{U} x_0 + \gamma^2 x_2) = \gamma^2 \partial x_2 = \mathcal{U} \gamma^2 x_3$ The Ax is to set UV = OFor C a chain complex over $\mathbb{F}[u,v]/uv$, let ∂_u be the induced boundary map on C/V and let Dr be the induced boundary map on C/U. Defin: Univer a sequence $(a_i)_{i=1}^{2N}$, $a_i \in \mathbb{H} \setminus \{20\}$, the associated standard complex has generators (over $\mathbb{F}[U,V]/UV$) xo, X, ..., X2N

1. For i odd a. if $a_i > 0$, then $a_{i} \times i = \mathcal{M} \times i_{i-1}$ b if $a_i < 0$, then $\partial_a \times i_{-1} = \mathcal{U}_{\times i}^{|a_i|}$ 2. For i even, a if $a_i > 0$, then $\partial_{y} x_i = \bigvee_{i=1}^{a_i} x_{i-1}$ 5. If $a_i < 0$, then $\partial_{y} x_i = V^{|q_i|} x_i$ Example (-1, 3, 1, -1, -3, 1) $\chi_{\circ} \xrightarrow{\mathcal{U}} \chi_{1} \xleftarrow{\sqrt{3}} \chi_{2} \xleftarrow{\mathcal{U}} \chi_{3} \xrightarrow{\mathcal{V}} \chi_{4} \xrightarrow{\mathcal{U}^{3}} \chi_{5} \xleftarrow{\mathcal{V}} \chi_{6}$ $\partial x_3 = \mathcal{U} x_2 + \mathcal{V} x_4$ Theorem (DHST) Every knot Floer complex over IF[U,V]/UV has a standard complex as a direct summand, and it is unique (up to chain homotopy equivalence). Furthermore, this standard complex is a concordance invariant. KcS3

KCS ³ CFK (K) CFK (K) my standard F[UN]/UN complex
Upshot: K> sequence
well-defined map $C \longrightarrow \{\text{sequences}\}$ of sets $[K] \longmapsto \text{standard complex sequence}$
Recall: standard complexes are in byjection with finite sequences (ai) ai $\in \mathbb{E} \setminus \{20\}$
Q: Can we put a binary operation on the set of such sequences to obtain a group homomorphism $C \longrightarrow \xi$ sequences j ? A: sort of $Ex: C_1 = (1,-1)$ $C_2 = (1,-1)$ $V_0 = u$ $V_1 = V$ $V_2 = (1,-1)$ $V_1 = V$ $V_2 = (1,-1)$ $V_1 = V$ $V_2 = V$ $V_1 = V$ $V_2 = V$ $V_1 = V$ $V_2 = V$ $V_2 = V$ $V_1 = V$ $V_2 $
$C_{1} \otimes_{\text{F[U,N]/UV}} C_{2}$ $x_{\circ}y_{2} \xleftarrow{u} x_{i}y_{2} \xrightarrow{\vee} x_{2}y_{2}$ $T_{V} \qquad T_{V} \qquad T_{V}$ $x_{\circ}y_{i} \xleftarrow{u} x_{i}y_{i} \xrightarrow{\vee} x_{2}y_{i}$ $J_{u} \qquad J_{u} \qquad J_{u}$ $x_{\circ}y_{\circ} \xleftarrow{u} x_{i}y_{\circ} \xrightarrow{\vee} x_{2}y_{\circ}$

change of basis: Spot the standard do complex summand! X242 » (۱-را^یرا-را) ه Î ↑ V X2Y, J U $X_{0}Y_{0} \leftarrow X_{1}Y_{0} \rightarrow X_{2}Y_{0}$ * Not as simple ou concatenation - recall tensor prod. is commutative. (Liven two sequences, (ai) and (bi) can take their associated standard complexes, tensor them together, and then perform a change of basis to obtain a standard complex summand. Examples: $\varphi_j = \xi_0 \quad \text{otherwise}$ $() \quad (1,-1) \otimes (1,-1) = (1,-1,-1)$ 2 $(1,-1) \otimes (1,-2,2,-1) = (1,-2,1,-1,2,-1)$ q:= 5 1 . j=1 Open Problem: give a precise description of the group operation on sequences

Nevertheless, Defni given a finite sequence of nonzero integers (ai) ai ∈ #\ 803 and a positive integer je Z>0 $\varphi_j(a_i) = \# \{a_i = j \mid i \circ dd \} - \# \{a_i = -j \mid i \circ dd \}$ Theorem Qj is a homomorphism Example: $\left(a_{1}, a_{2}, \ldots, a_{2n}\right) \otimes \left(-a_{1}, -a_{2}, \ldots, -a_{2n}\right) = O$ inverses Exercise ; $\Psi_{j}\left(T_{n,n+1}\right) = \begin{cases} 1 & j=-1,...,n-1\\ 0 & otherwise \end{cases}$, L space knots, Sult, read of complex, Covellary

Consi	der
-------	-----

 $0 \longrightarrow C_{TS} \longrightarrow C_{Smooth} \longrightarrow C_{top} \longrightarrow$ topologically slice knots subgroup of concordance group Example: Wh(K) E Cts Y K by Freedman since $\Delta_{wh(k)}(t) = 1$ Wh(T2,3) is not smoothly slice (Donaldson) Theorem (Ozsváth - Stipicz - Szabó) Cts contains a Z[∞] direct summand Proof relies on concordance homomorphicm Ik upsilon Reproof of this result using 9. DHST Theorem 2 surjective ⊕ Pjini C_{ts} n,n+1 cable Proof. Let $D = Wh(T_{2_13})$ $D_{n,n+1} \sim U_{n,n+1} = T_{n,n+1}$ Observe D top slice i.e. D ~ U

 $\implies D_{n,n+1} \# - T_{n,n+1} \sim U$ $D_{n,n+1} \# -T_{n,n+1} \in C_{TS}$ $\underbrace{Claim}_{j} \left(D_{n,n+1} \right) = \begin{cases} n & j=1 \\ 1 & |cj < n-1| \text{ or } j=n \\ 0 & j=n-1 > 1 & \text{ or } j > n \end{cases}$ $\left(\Psi_{j}(T_{n,n+1}) \right) \Rightarrow$ Claim & earlier exercise $\Psi_{j}\left(D_{n,n+1} \# -T_{n,n+1}\right) = \begin{cases} 1 & j=n \\ 0 & j>n \end{cases}$

Dr Hom - No office hours today (Weanesday) Correction from last time: T2,3;2,1 Last time: K no CFK(K) no standard no sequence complex (ai) chain homot.cpx is a concord-is a knot invariant inv. but not concordance inv If K is an L-space knot, then (a_i) is determined by $\Delta_k(t)$ Theorem (Hedden, Hom) longit winding Kp.g = cable knot Let p>0. Then Kp, g is an L-space knot K is an L-space khot and q > p(2g(k)-1)Proof (< Consider Spg (Kp,q) $\underbrace{Claim}_{pq}(K_{p,q}) = S^{3}_{pp}(K) \# \lfloor (p,q) \end{pmatrix}$

(Exterior) Proof of claim: For a knot $J \in S^3$, let $E(J) = S^3 - \nu(J)$ $T_{J} = \partial \nu(J)$ $E(K_{p,q}) = E(K) \cup_{T_{K}-A} \cup (K)$ where $A = \nu(K_{p,q}) \cap T_{k}$ K=4, Kρ, q, nbhd knot is annulus, complement is an annulus Now give solid torus $S' \times D^2$ to exterior E(Kp,q) such that {0} × ∂D² maps to a pq-framed longitude λ of Kp,q Exercise: λ is the surface framing of Kp,q on TK (drow push off and compute limiting #) $S' \times D^2$ as $([0, \pi] \times D^2) \cup ([\pi, 2\pi] \times D^2)$ Decompose meridinal disks think of as thickened

Exercise
$E(K) \cup (E(k) \cup (E(k) \times D^{2}) = S_{q/p}^{3} (K) - B^{3}$
Some surgery on K-B ³ and then check framing
2) $\nu(K) \cup ([\pi_1 2\pi] \times D^2) = L(p,q) - B^3$
3) $\left(\left\{0\right\}\times D^{2}\right) \cup \left(T_{k}-A\right) \cup \left(\left\{\pi, \right\}\times D^{2}\right) = 5^{2}$
This completes the proof of claim.
Hence $S_{pq}^{3}(K_{p,q}) = S_{q/p}^{3}(K) \# L_{p,q}$
So if K is an L-space knot, and $8/p = 2g(k) - 1$, then $8_{q/p}^{3}(k)$
is an L-space.
L(p,q) is an L-space
Since connected sums of L-spaces are L-spaces (since
$HF(Y_1 \# Y_2) = HF(Y_1) \otimes HF(Y_2)$ (Exercise: compute H_1)
It follows that $5^{3}_{pg}(Kp,g)$ is an L-space, as desired.
(For \Rightarrow , see H. A note on cabling and L-space surgenies)
· · · · · · · · · · · · · · · · · · ·
Exercise: Let p>0. Tz,z,p,q is an L-space knot a q>p

Exercise: Find sequence (ai) for Tz, 3; n, n+1 <u>Aecall</u> $\Delta_{\text{Kp},q}(t) = \Delta_{k}(t^{p}) \cdot \Delta_{\text{Tp},q}(t)$ $\Delta_{T_{p,q}}(t) = (t^{p_{q}}-1)(t-1)$ $(t^{p}-1)(t^{\varphi}-1)$ $D = Wh(T_{2,3})$ Goal $\Psi_{j}(D_{n,n+1})$ Proposition: (Lipschitz - Ozsváth - Thurston) If Ko and K, have the same standard complex representative, then (satellites) P(K.) and P(K.) also have the same standard complex representative. In other words, satelliting gives a well-defined map on sequences (ai) Proposition (Hedden) D=Wh(T2,3) has the same standard complex as T2,3 · · · [.e. · (1,-1) Hence $\Psi_j(D_{n,n+1}) = \Psi_j(T_{2,3j}, n, n+1)$

Q: Besides the P;, can we get from	what other c the sequence	invariante invariantes?	.
Let (a;) be the sequence	e associated	to Kana and Andrea	· · · · · · · ·
$\underline{Defn} \in \mathcal{E}(K) = \begin{cases} 1 & 1 \\ 1 & 1 \\ 0 & 0 $	$a_1 > 0$ $a_1 < 0$ therewise (i.e.	(ai) is trivial sequem	(\mathbf{r}, \mathbf{e})
Example: Unknot has trivial	sequence	· 20 · · · · · · · · · · · · · · · · · ·	· · · · · · · ·
Example:			· · · · · · · ·
			· · · · · · · ·
$T_{z_1 3}$ U		$\mathcal{E}(\mathcal{T}_{2_13}) = 1$	· · · · · · · ·
Example: $T_{2,3}$ $v \downarrow$ $\cdot \leftarrow - \cdot$	$\left(-1,1\right)^{1}$	$\varepsilon(T_{-2,3}) = -1$
			· · · · · · · ·

Observe:		N	st a group	· · · · ·	
	\longrightarrow ξ -1, c	s, i f i n	ot a how	omorphism	· · · · · · ·
We can sti	() OUS (C				
Q H	on does E	beherve	under conn	ected sum	++ ² ² ++
A Li	ke a sign				
I roposition	ε(κ,)	E (K2)	E(K, #K	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	+	+ 1 · · ·		
			1		
		· <u>+</u>) · · · ·	さし		
		· · · · · · ·	anything		
· · · · · · · ·					· · · · · ·
Observe					
K ~~>	CFK(K)				
-K~~	$CFK(K)^*$				
K1#K2~~	> CFK(K1)(D CFK(K2)))		
	cl crylu				
F slice ~					

Consider	· · · · · · · ·					re equivalience relation
CFK :=	complexes that sati	over F sfy the soperties c	[U,V] same zo CFK			
C.~ C Upshot: C-	$\varepsilon = \varepsilon (C_{\circ})$	⊗ C,*) = 9~0up		Source Participant	etimes cally E-equivale cal equival F[1	ed nee, or ence over 1,N]/uN
[K]	↔ [ŒĽ(K)]			OPEN Q Is th	is surjectiv	e ⁷
CFK(Ko)	$\sim CFK(K_1) \leftarrow$	⇒ K., K,	have	the same	sequence	(ai)
		· · · · · ·				