	MORY IL												
	week 4												
• •	8803	• • • •	• •	• •		 • •		*	• •		• •		• •
	Monday	ld 4											
		I J											
		· · · · ·											
	(Nodioseday)												
	Wednesday	. p q. i.i											
	J	pg []											
			*	- •		 - *							. •
		*	,		*		·	-	-			-	
			*	- •		 - *							. •

Last time:

$$X_n(K) = B^4 \cup n$$
-framed 2-havaic attached along K
 $= B^4 \cup_{\varphi} (D^2 \times D^2)$
 $\varphi; \partial D^2 \times D^2 \longrightarrow \psi(K)$
 $S' \times 2x_3 \longmapsto n$ -framed Longitude of K
 $x \in \partial D^3$
 $vore of 2-havade is $D^2 \times 20^3$
 $o(D^2 \times D^2) = \partial D^2 \times D^2$ IL $D^2 \times \partial D^3$
 $vore of 2-havade is $D^2 \times 20^3$
 $o(D^2 \times D^2) = \partial D^2 \times D^2$ IL $D^2 \times \partial D^3$
 $vore of 2-havade is $D^2 \times 20^3$
 $vore of 2-havade is $D^2 \times 20^3$$

Proof (<) Suppose K is slice Counsider $S^{4} = B_{1}^{4} U_{S^{3}} B_{2}^{4}$ $X_{\circ}(K) \cong B_{2}^{4} \cup \nu(D_{k})$ is the desired embedding $B_2^{\rm H}$ $B_1^{\rm H}$ $D_{\rm K}$ Exercise: This is a O-framed 2-handle Not smooth ($(\Longrightarrow) \varphi : S^2 \longrightarrow X_{\circ}(K)$ $\varphi(S^2) = core of the 2-handle U cone on K$ P is smooth away from the cone S^{3} $\varphi(S^{2})$ $\varphi(S^{2})$ point P i X. (K) -> S' embedding $i \circ \varphi : S^2 \longrightarrow S^4$ smooth (resp. locally flot) away from i(p) $W = S^4 - \nu(i(p)) \cong B^4$ $i \circ \varphi$ is smooth (resp. top locally flat) $s^2 - \varphi^{-1}(P)$ (ousider embedding of D^2 into $W \cong B^4$

(orollary Xo(K) smoothly (resp. locally collared) embeds into TRY K is smoothly (resp. top.) slice Proof Exercise Goal: Use knots to construct an exotic pair of 4-mfds Defini Mi, Miz smooth 4-mfds Mi, Mz are an exotic pair if they are homeomorphic but not diffeomorphic. Thm (Freedman-Quinn) Let M be a connected, non-compact 4-mfd. If desired, fix a smooth structure on any collection of connected computs of the boundary. Then I a smooth structure on M extending the given smooth structure on (a subset of) 2M Construction (Gompf-Stipsicz Exercise 9.4.23) Let K be a topologically slice knot that is not smoothly slice. then can construct a smooth manifold R that is homeomorphic but not diffeomorphic to R¹_{std}

· let K be topologically slice but not smoothly slice (eg Wh(RHT)) . I a locally collared embedding of the trace into 1724 $i : X_{o}(k) \longrightarrow \mathbb{R}^{4}$ by corollary to Trace Embedding Lemma • $i(X_o(K))$ inherits a smooth structure from $X_o(K)$ · Since i is locally collared, \mathbb{R}^4 - int $(X_o(k))$ is a manifold. Also, it is connected and non-compart • Freedman-Quinn \implies Extend smooth structure on $i(\partial X_0(K))$ to the rest of \mathbb{R}^4 -int $(X_0(K))$ giving a smooth mfd \mathbb{R} that is homeomorphic to IR" X.(K)X.(K)R4 diffeonorphic to IRy R is not Claim:

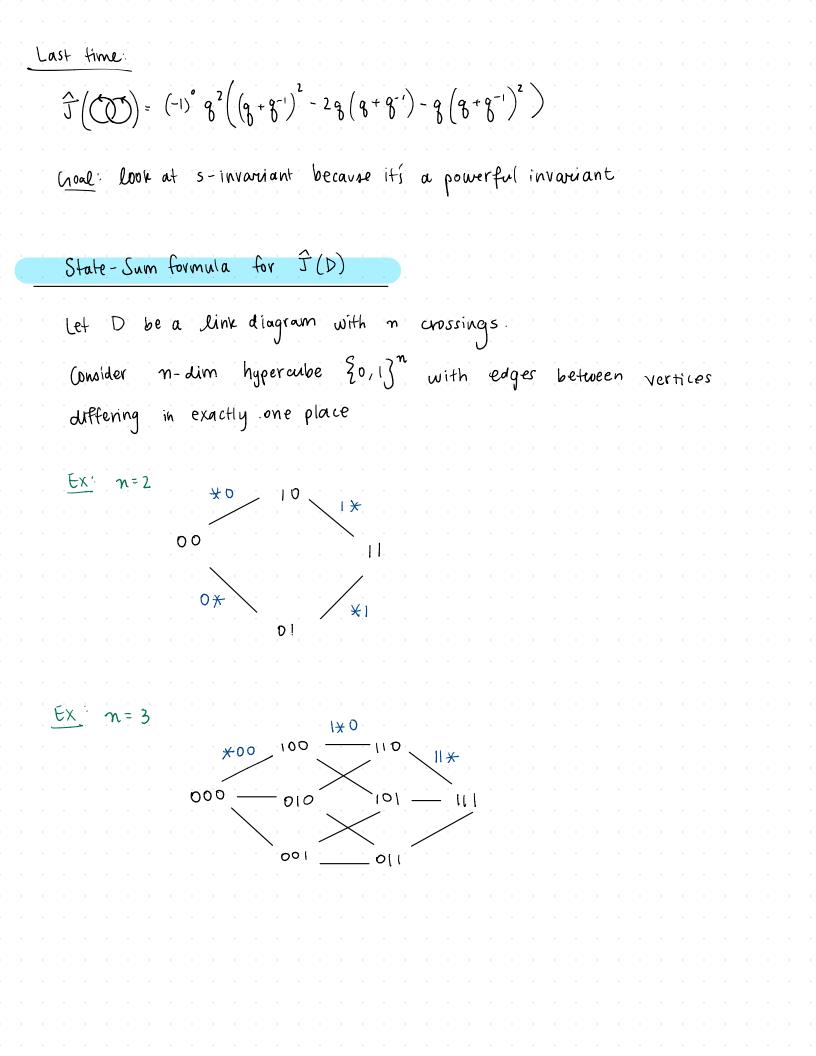
Proof of Claim: Suppose it were. Then by construction, we have a Smooth embedding → R = diffeo RY , X, o , —, ⇒ K is smoothly slice Ø Corollary to Trace Embedding Lemma 111 We can also use 4-mfds to prove results about knots: Rotate by 180° then the ends match up and give Conway Knot Mutant of the Lonway Knot Conway Knot Kinoshita-Terasaka Knot ΚT Exercise $\Delta_{\rm KT}(t) = \Delta_{\rm c}(t) = |$ 2. KT is ribbon

Q Is the Conway Knot smoothly slice? All known smooth concordance invariants vanish on C A No (Picarillo) Proof (sketch) • Build a knot J with $X_o(J) \cong X_o(C)$ • Show that J is not smoothly slice using $s(J) \neq 0$ T.E.L implies Xo(J) does not smoothly embed into St Hence Xo(C) does not smoothly embed in St hence C is not smoothly slice. Hs is not a O-trace invariant. In particular, S(C) = 0How do you find J? add a cancelling pair s.t. the 1-h $X_{o}(C) = B' \cup (2-h)$ can cancel either of the 2-h's = B⁴ U (1-h) U Z(2-h) (then this is the trace of 2 knots)

Khovanov Homology and the s-invariant
Melissa Zhang Notes on Khovanov homology
Arteline: · Kauffman bracket
o Jones Polynomial
. Khovanov homology
· Lee perturbation
- Rasmussen s-invariant
Defn. the Komffman bracket (D) of a link Diagram D is the
Laurent polynomial in q defined recursively by
$(1, 1) < \times > = < \stackrel{\sim}{\sim} > - q < > (1)$
2.) $\langle L \parallel D \rangle = (q + q^{-1}) \langle L \rangle$
$(3) \langle \phi \rangle = 1$
Example: $D_1 = O$ $\langle D_1 \rangle = q + q^{-1} = \langle \phi \downarrow 0 \rangle$
$2 - D_2 = O O \qquad \langle D_2 \rangle = (q + q^{-1})^2$
3. $D = 0 \cdots D \langle D \rangle = (q + q^{-1})^n$
n
· · · · · · · · · · · · · · · · · · ·

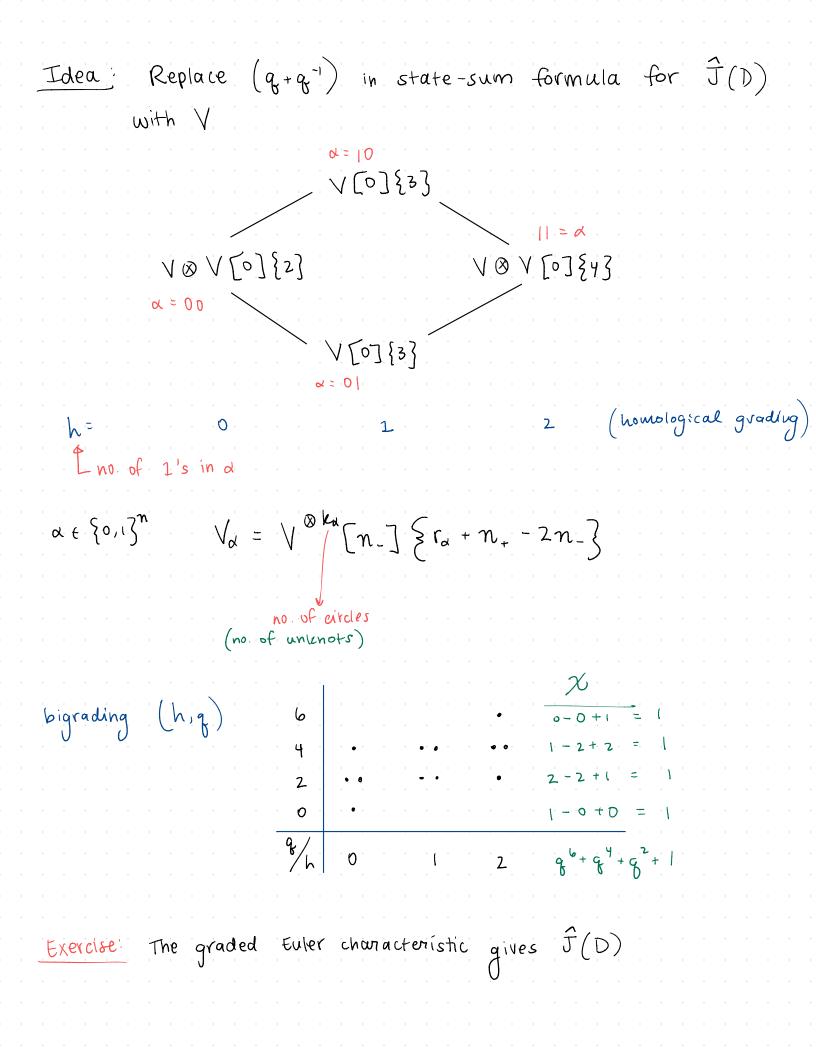
Example: $\langle D_{4} \rangle = \langle \Box \rangle - g \langle O O \rangle$ 4 Dy= X $= \left(q_{1} + q_{2}^{-1} \right) - q_{1} \left(q_{2} + q_{2}^{-1} \right)^{2}$ $= -q^3 - q$ isotopic to unknot but has different Kauffman bracket. Note: Kauffman bracket is not a link invariant $E \times ercise',$ D = [k] $A : \langle D \rangle = -q^2 \langle D' \rangle$ Q How does the Kanffman bracket change? Let D be a diagram with n_n negative and n_+ positive crossings. Defin The (unnormalized) Jones polynomial of D is $\widehat{\mathcal{J}}(\mathbf{D}) = (-1)^{n} + q^{n} + Q^{n} + \mathbf{D}$ Exercise: $\hat{J}(D)$ is a link invariant

 $\mathcal{J}(D) = \frac{\widehat{\mathcal{J}}(D)}{\widehat{g}^{\dagger} \widehat{g'}}$ The Jones polynomial is Defn. Example: $\hat{f}(\hat{O})$ <0> = <0> - <0> $=\langle co \rangle - q\langle co \rangle - q \langle co \rangle - q \langle co \rangle$ $= (q+q^{-1})^{2} - q(q-q^{-1}) - q((q+q^{-1}) - q(q+q^{-1})^{2})$ $= q^{4} + q^{2} + |+q^{-2}$ (25) Can resolve 8+8-1 $\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$ $(\langle \varsigma \rangle \rangle$ $(g^{+}g^{-'})^{2}$ $(q+q^{-'})^2$ simultaneously: $(\overline{\gamma})$ ·8+8-1 (unnormalized) To recover Jones polynomial $\widehat{J}\left(\bigcirc\bigcirc\right) = \left(-1\right)^{\circ} q^{2}\left(q^{4} + q^{2} + 1 + q^{-2}\right)$ n+= 2 $= q_{0}^{b} + q_{1}^{4} + q_{2}^{2} + 1$ n_= 0

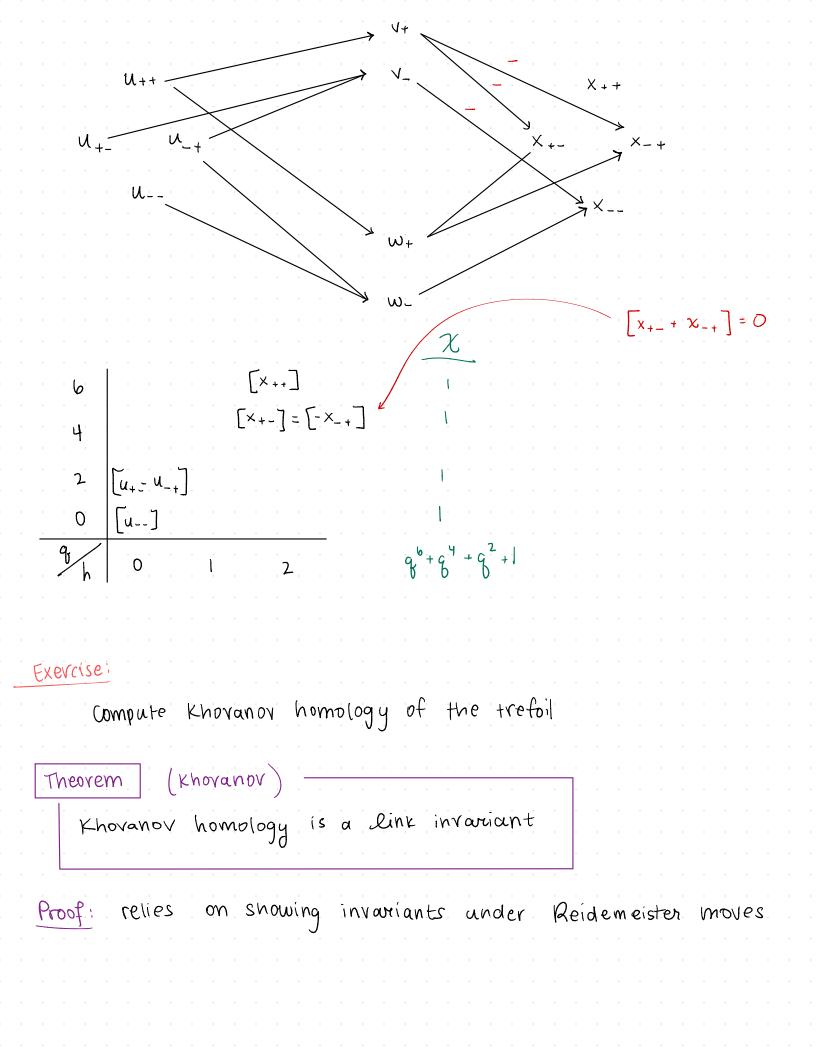


 $\alpha \in \{0, 1\}^n$ o resolution 2 resolution $\int_{a} = associated collection of aircles$ $f_{\alpha} = \# of \quad |s in \alpha|$ $k_{\alpha} = \#$ of circles in \prod_{α} Claim $\widehat{J}(D) = (-1)^{n} - q^{n+2n} \cdot \sum_{\substack{d \in \{0,1\}^{n}}} (-q)^{r} (q+q^{-1})^{k}$ Proof Exercise 10 $n_{+}=0$ $n_{+}=2$ 00 8+8-1 (g+g-')? (q+q-')² 01 (\mathcal{A}) 8+8-1 bigraded chain complex (roal: diagram $\sim \sim >$ CKh(D)· (co-) homology of CKh(D) is an invariant s.t. · graded Euler characteristic is Jones polynomial $\chi_q(CKh(D)) = \sum_{i,j \in \mathbb{Z}} (-i)^i q^j r H^{i,j}(CKh(D)) = \hat{J}(D)$

$V = \overline{H}_{V_{+}} \oplus \overline{H}_{V_{-}}$ bigraded \overline{H}_{-r} V_{\pm} bigrading ($(0, \pm 1)$
<u>Note</u> : $\chi_q(V) = q + q^{-1}$	
Notation $C = \bigoplus_{i,j} C_{i,j}$ $C[n] \{m\}_{i,j} = C_{i+n,j+m}$ J Shift in Shift Ist 2nd grading grading	<u>Note</u> : also have bigrading (h,q) instead of (i,j)
Example: V $E_{v_{+}}$ $E_{v_{+}}$	$V[2]{33}$ E_{v_+} E_{v}
$\frac{E \times ample}{V \otimes V} = V_{+} \otimes V_{+}$	$\mathcal{V}\{z\} = \mathcal{V}_{+} \bigoplus_{i=1}^{n} \mathcal{V}_{+}$



Differential on CKh(D) -happens along edges of hypercube La circles either merge or split along an edge merge two circles (so two copies of V) go to one $\gamma_{\mathcal{M}} \approx \sqrt{\otimes \sqrt{1-2}}$ V+ 10 V+ +---> V+ 10 merge $\begin{array}{c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$ V-@·V+, V+⊗Y_ · +→→ ·V- $V_{\sim} \otimes V_{-} \longmapsto 0$ split: $V_{+} \longmapsto V_{+} \otimes V_{-} + V_{-} \otimes V_{+}$ $V_{-} \longmapsto V_{-} \otimes V_{-}$ · differential is identity on passive circles along an edge \pm signs needed along edge according to the no. of I's before \times in edge label (needed so that $d^2=0$) before 4, so pick up a minus sign when you travel around top. $(q + q^{-1})^{2}$ - No sign picked up



Main Idea: Let C be a chain complex with subcomplex A E C That is, A is a submodule of C and dA = A Then we have a short exact sequence of chain complexes $0 \longrightarrow A \longrightarrow C \longrightarrow C'_A \longrightarrow 0$ Lemma Let $0 \rightarrow A \rightarrow C \rightarrow \forall A \rightarrow D$ be a ses of chain complexes, 1. If $A \simeq D$, then $C \simeq C/A$ 2. If $c/A \simeq 0$, then $A \simeq C$ Reidemeister invariance involves finding sub or quotient complexes null-homotopic that are

Q: How can Khovanov homology be use to study concordance?	
Lee Perturbation:	
	$\bigvee_{i} \longrightarrow i \forall_{i} \otimes \forall_{i} \otimes i $
	$V_{+} \longmapsto V_{+} \otimes V_{-} + V_{-} \otimes V_{+}$
$V_{-} \otimes V_{+}, V_{+} \otimes V_{-} \longmapsto V_{-} \\ V_{-} \otimes V_{-} \longmapsto 0 + V_{+}$	$V_{-} \longmapsto V_{-} \otimes V_{-} * V_{+} \otimes V_{+}$
$d_{\text{Lee}} = d_{\text{Kh}} + \overline{\Phi}$ purple terms	(h,q) homological guantum grading grading
But wait! d _{Lee} does not preserve the quo Filtered Chain Complexes	intum grading
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Let (C,d) be a chain complex. A filtration	on (C,d) is a
sequence subcomplexes	
$ = F_i = F_{i+1} = F_{i+2} =$	
such that	
$\bigcap_{i} F_{i} = \phi$ $\bigcup_{i} F_{i} = C$	

Chenerally we will be interested in finite length filtrations where only finitely many F_i are not ϕ or C
i.e. $C = F_n \ge F_{n+1} \ge \dots \ge F_{n+k} = 10^{10}$
Idea !
F_{i}
Note: (CKh, d _{Lee}) is a filtered chain complex with
$F_i = \bigoplus_{\substack{q \ge i}} CKh_q$