			· · ·				
	8803		· · ·				
			· · ·				
week 6			· · ·				
	Monday	Dq 2	· · ·				
	riology FJ		· · ·				
	vleanesady	pg io	· · ·				
			· · ·				
					· ·	· ·	
			· · ·				

Last time
Lee perturbation (Lee(L)
merge m': V&V> V{LZ
$V_{\pm} \otimes V_{\pm} \longmapsto V_{\pm}$
$V_+ \otimes V, V \otimes V_+ \longmapsto V_1$
$V_{\sim} \otimes V_{\sim} + $
$split$ $\Delta': V \longrightarrow V \otimes V \{ e \}$
$ \sqrt{+} \longrightarrow \sqrt{+} \sqrt{-} + \sqrt{-} \sqrt{+} $
$\bigvee_{-} \bigvee_{-} \otimes \bigvee_{-} \bigvee_{+} \otimes \bigvee_{+}$
$d_{\text{Lee}} = d_{\text{Kh}} + \text{red terms}$ Exercise: Check $d_{\text{Lce}}^2 = D$ $V = \frac{V_+}{V}$
Note: Lee complex has a well-defined $\frac{Z}{4}$ quantum grading For our discussion of s, we will work with Q-coefficients
(more generally works over a field of any characteristic)
$V = \mathbb{Q}_{V_{+}} \oplus \mathbb{Q}_{V_{-}}$

(onsider +	he change of basis
	$a = V_{-} + V_{+}$
	$b = v_{-} - v_{+}$
Note	
· · · · · ·	These elements don't have a well-defined quantum grading as
	they are not homogeneously graded
2 0	We can still consider the quantum filtration of a non-homogeneously graded element x
í.e. g	$\Gamma_q(X) = \max\{i \mid X \in F^i(CLee)\}$
	$a = V_{-} + V_{+}$ $b = V_{-} - V_{+}$ $C \ge \ge F_{i} \ge F_{i+1} \ge \ge 10^{-1}$
an	ed the quantum filtration of a homology class [x];
	$gr_{q}(x) = \max \{gr_{q}(y) [x] = [y] \}$ homologous
Exercise;	$m': a \otimes a \longmapsto 2a \qquad \Delta': a \longmapsto a \otimes a$
	$a\otimes b$, $b\otimes a \longrightarrow 0$ $b \longrightarrow b\otimes b$
	$b\otimes b \longrightarrow -2b$

gives us how many
Theorem (Lee)
The homology of an n-component link L is
$Lee(L) \cong (\mathbb{R} \oplus \mathbb{R})^{n}$
corresponding to the 2 ⁿ different orientations of L
Lee's canonical generators
hiven a diagram D, J a checkerboard coloring
D convention: leave the infinite region unshaded
Say knot is oriented, then I an oriented resolution at each crossing.
Do Checkerboard shading induces shading on Do
Now draw a dot to the left of any point on each circle.
If dot is in a shaded (resp. anshaded) region, label that circle with an a (resp b)
$S_o = a \otimes b$ D_o

$D_{\overline{o}} = O$ $S_{\circ} = b \otimes a$
opposite orientation
Exercise: So & ker d _{Lee}
Let K be a knot
$Smin(K) = min \{ gr_{q}([X]) [X] \in Lec(K), [X] \neq 0 \}$
$S_{\max}(K) = \max \{ gr_{q}(X) [X] \in Lee(K), (X] \neq 0 \}$
Defn: (J. Rasmussen) (Kis a knot)
$S(K) = \frac{Smax(K) + Smin(K)}{2}$
(*) Proposition (K is a knot)
Smax = Smin + 2, or equivalently S = Smax-1 = Smin + 1
Exercise! For a knot K, quantum gradings are all odd
Recall' (Lee(K) has a Z/y quantum grading, hence
$CLee[k) \cong CLee_{(k)} \oplus CLee_{(k)}$ where $CLee_{t}(k)$
is the summand in \mathbb{E}/y quantum grading ±1

	D is the opposite
Lemma	
Let D be a diagram for a knot K and	0 be an orientation.
Then $S_0 \pm S_{\overline{o}}$ are in two different $\frac{\pi}{2}/y$	quantum gradings
of Cluee(D)	· · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
Exercise: Proof of Lemma	
Hence $S_0 \pm S_{\overline{o}}$ generate the summands in Lee ([K) = Lee, (K) ⊕ Lee, (K)
and hence $S_{max}(K) \neq S_{min}(K)$	
and	Lee homology supported in 2 dif. #/y
$S_{min}(K) = qr_{q}([s_{n}]) = qr_{q}([s_{n}])$	gradings lifting to
	two dif. generators
since both [so] and [so] have	
components in $\frac{E}{4}$ - grading $Smin(K)$ either	cancels in Lee, (K) @Lee, (K)
Algebraic Aside: Mapping cone	
Lat (A B be a chasta man between	
Let P.M. D be a creation map between	
$\mathcal{A} = \begin{pmatrix} \mathcal{A} \\ \mathcal{A} \end{pmatrix}$	
$\left(\begin{array}{c} (\begin{array}{c} (\end{array}{c} (\begin{array}{c} (\begin{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}{c} (\\ c) (\end{array}{c} ()) (\end{array}{c} (\end{array}{c} (\end{array}{c} ()) ()) (\end{array}{c} ()) ()) ())$)	
$\longrightarrow A' \xrightarrow{dA'} A^{\circ} \xrightarrow{dA} A' \xrightarrow{dA'} A' \xrightarrow{dA'} A' \xrightarrow{dA'} A'$	
f'' f'' f'' f'' f'' f'' f'' f''	commutes

The mapping cone of f is $C(f) := \left(\bigoplus (A^{i+1} \bigoplus B^i), \bigoplus i \right)$	$d_{A} O$
$ \xrightarrow{A'} \xrightarrow{d'_{A'}} A^{\circ} \xrightarrow{d'_{A}} A' \xrightarrow{d'_{A}} A'^{2} \xrightarrow{f} $	make ares .nti-commute
$\frac{d^2}{c(f)} = 0$	
In practice, we write the cone qs $C(f) = (A \xrightarrow{f} B)$ $A \xrightarrow{f} B$	ont of the
Note: 3 short exact sequence	
$0 \longrightarrow B \longrightarrow c(f) \longrightarrow A[-1] \longrightarrow$	• • • • • • • • • • • • • • • • • • •
Example: $V \otimes Y \mapsto V$	C(f) tells you to view the map as a differential $V = \#v_* \oplus \#v$
Khovanov chain cmplx associated to this diagram: $CKh(OO) = C(m:00 - $	→ ∞{1})
<u>Defin</u> A chain map $f: C \longrightarrow C'$ between filtered chain is <u>filtered</u> of degree k if $f(Fi) \in F_{it k}^{l}$	complexes

Lemma Let K, Kz be knots. I a short exact sequence → Lee $(K_1 \# K_2) \xrightarrow{p^*}$ Lee $(K_1) \otimes$ Lee $(K_2) \xrightarrow{m^*}$ Lee $(K_1 \# K_2) \xrightarrow{m^*}$ O 0 where p* and m* have plitered degree -1 Proof: Let Di, Dr be dragrams for K., Kr resp. $\left(\begin{array}{c} 1\\ D_1 \end{array}\right)$ K, # K2 Clee (D) D mapping cone So we have a s.e.s. $\stackrel{\iota}{\longrightarrow} Clee(K_1 \# K_2^{\Gamma}) \stackrel{\rho}{\longrightarrow} Clee(K_1 \amalg K_1) \stackrel{\rho}{\longrightarrow} O$ $0 \longrightarrow CLee(k, \# k_2) \{1\}$ which induces a long exact sequence homology on $Q \oplus Q \quad dim = 2$ $Lee(K_1 \# K_2) \longrightarrow Lee(K_1 \# K_2)$ QOQ dim=2 p* Lee (Ki II Kz) Ny dim=y

Exercise:
$$i^{k} = 0$$
 since $2+2=4$ (rank willing, exclusion)
and so l.e.s. of vector spaces splits, i.e. we have a s.e.s.
 $0 \longrightarrow bee(K_1 \# K_s^{n}) \xrightarrow{P^{n}} bee(K_1 \perp K_n) \xrightarrow{M^{n}} bee(K_1 \# K_n) \longrightarrow 0$
What happens to the quantum graduly?
Exercise: Both p* and m^{n} are filtered of degree -1
(hoad:
 (K) Proposition
 $(K \text{ is a lengt)}$
Smax = Smin + 2, or equivalently. $S = S_{max}-1 = S_{min}+1$
Proof: Above Lemma with $K_n = K_{K_2} = U$
 $0 \longrightarrow bee(K) \xrightarrow{P^{n}} bee(K) \otimes bee(U) \xrightarrow{M^{n}} bee(K) \longrightarrow 0$
 p^{n} and m^{n} are filtered of degree -1.
 $be(u) = Ra \oplus Rb$
No be continueal:

to do this change of basis need to be over the instead of Z Last time: $\alpha = V_{-} + V_{+}$ non-homogeneous basis $b = V_{-} - V_{+}$ Lee canonical generators so, sot so generate summands in $lee(K) \cong lee_1(K) \oplus lee_1(K)$ for knot, quantum grading is odd.) so the Lee homology splits either this in the $\frac{1}{4}$ -graded theory $s_{min} = gr_q([s.]) = gr_q([s.])$ is the quantum grading of either so or so (roal (Kis a knot) (*) Proposition Smax = Smin + 2, or equivalently S = Smax-1 = Smin + 1 Proof of Prop. Use Lemma with $k_1 = K$ K2= U $0 \longrightarrow \text{lee}(K) \xrightarrow{p^*} \text{Lee}(K) \otimes \text{Lee}(U) \xrightarrow{m^*} \text{Lee}(K) \longrightarrow 0$ p* and m* are filtered of degree -1. We want to understand Lee (u) = Ra O Rb stuff in here! Lo crossingless diagram of K has orientations acc to a and b and checkerboard coloning. $\boxed{D} = c \left(\boxed{D} \right) \xrightarrow{m'} \boxed{D}$

One of $\{s, s_{\overline{s}}\}$ has a labol a on the component where the connected sum appears. Call this generator so and the other sb
$gr_q([S_a + \varepsilon S_b]) = S_{max}$ for $\varepsilon = 2$ or -1 (we don't know which is gen. Smax)
$m^*([S_a + \varepsilon S_b] \otimes a) = [S_a] (by definition of m)$
Since m* is filtered of degree -1,
$gr_{q}([s_{\alpha}]) \ge gr_{q}([s_{\alpha} + \varepsilon S_{b}] \otimes \alpha) - 1$
$qr_q([S_a + \xi S_b] \otimes \alpha) \leq gr_q([S_a]) + 1$
$\frac{\text{Recould}}{\text{Hence}} = \frac{3}{3} \left(\left(\frac{1}{5} \right)^{-1} - \frac{3}{3} \left(\frac{1}{5} \right)^{-1} \right) = \frac{3}{3} \left(\frac{1}{5} \right)^{-1}$ $\text{Hence} = \frac{3}{3} \left(\frac{1}{5} \right)^{-1} - \frac{3}{5} \left(\frac{1}{5} \right)^{-1} + $
Also recall: $Smax(k) \neq Smin(k)$
$= S_{\text{Max}}(K) = S_{\text{Min}}(K) + 2$
Exercise: Show that $s(RHT) = -\chi = 2$ Ly just find one of the generators $\{50, 50, 50, 50, 50, 50, 50, 50, 50, 50, $

Properties of s Exercise 1- Suppose that K, and K_ differ by a single clossing change (positive to negative from K+ to K-) $s(K_{-}) \stackrel{\epsilon}{=} s(K_{+}) \stackrel{\epsilon}{=} s(K_{-}) + 2$ then 2. s(-k) = -s(k)3 $S(K_1 \# K_2) = S(K_1) + S(K_2)$ s : s(4) = 0Theorem (Rasmussen) $\frac{S(K)}{2} = \frac{2}{2} + \frac{2}{2} + \frac{3}{2} + \frac$ > Shamp for torus knots The proof relies on . view minimal genus slice surface as a genus $g_{\mu}(K)$ wordism between U and K · Decompose cobordism into elementary cobordisms: saddles split 2 components minima maxima merge or split (----) cap curp

	+ topological quantum field theory
Khovanov	homology as (1+1)-TQFT) hand wavy! (sorry!) Knots are cobordisms sort of add a dimension (sorry!)
	(obordism gives a map between Khovanov hom of the knots on ends which behaves wicely with product =) id on hom and "stacking" otherwise
<u>Def</u> ú. I.	a Frobenius system is the data $(R, A, L, m, \varepsilon, \Delta)$ consisting of a commutative ground ring (e.g. E, Q)
· · · · · · · · · · · · · · · · · · ·	an R-algebra A, in powficular a) the inclusion map L: R -> A that sends 1+> 1 b) multiplication map m: A&A -> A
3	co-multiplication map $\Delta: A \longrightarrow A \otimes A$ that is co-associative and co-commutative i.e. $A \xrightarrow{\triangle} A \otimes A$ (Reversing all arrows would $\Delta \int 2 \int id \otimes \Delta$ give associativity) $A \otimes A \xrightarrow{A \otimes A} A \otimes A$
4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	R-module co-unit $\varepsilon : A \longrightarrow R$ $(\varepsilon \otimes id) \circ \Delta = id$ $u^{oes other way}$ Frobenius algebra i.e. it is both an algebra and a co-algebra and the following relation holds:

 $(\mathrm{id}_A \otimes \mathrm{m})_o (\Delta \otimes \mathrm{id}_A) = \Delta \circ \mathrm{m} = (\mathrm{m} \otimes \mathrm{id}_A) \cdot (\mathrm{id}_A \otimes \Delta)$ $(\mathcal{Z}, \mathcal{V}, \iota, m, \mathcal{E}, \Delta)$ is a Frobenius system Example: $\mathcal{M}: V_+ \otimes V_+ \longmapsto U_+$ $\mathcal{E} : \mathsf{V} \longrightarrow \mathcal{H}$ しいをーシン $\vee_+ \otimes \vee_{-j} \vee_- \otimes \vee_+ \longmapsto \vee_-$ V_t (---) O 1 - V+ V_ 1-> 1 N_OV_ +- D Example: $(D, V, u, m', \varepsilon, \Delta')$ is a Frobenius system Keyidea: A cobordism F: Ko-, K, induces chain maps CKh(F): CKh(Ko) ~~>> CKh(Ki) Clee(F); $Clee(K_0) \longrightarrow Clee(K_1)$ Clee(F) is a filtered map of degree X(F) (see exercise 3.3.11 in Zhang) Rosmussen's proof that $\left|\frac{s(K)}{z}\right| \leq q_4(K)$ relies on showing that map induced by cobordism is non-zero.

Corollary $\frac{S}{2}: \mathcal{C} \longrightarrow \mathcal{H}$ is a surjective homomorphism La well-defined b/c. it's zero on slice knots s is additive under connected sum s(RHT) = - 2 (gen. of the integers) projection with all + crossings Theorem If D is a positive diagram for a positive knot K, then $s(K) = gr_{q}(s_{o}) + |$ Proof: The oriented resolution Do is the unique resolution at the left most vertex of the cube of resolutions. Then there are no differentials into this homological grading, so so and so are alone in their respective homology classes. Show that $s(T_{p,q}) = (p-1)(q-1)$ Exercise: this is the same and conclude that as the Seifert $u(T_{p,q}) = g_{4}^{\text{smooth}}(T_{p,q}) = (p-1)(q-1)$ genus for torus knots by exercise below! this resolves the Milnor Conjecture

Exercise: $q_{4}^{\text{smooth}}(k) \leq u(k)$ L unknotting number $u(k)$ is the min no. of crossing changes to get to unknot
Exercise, (Maybe hard?)
If K is alternating, then $s(K) = -\sigma(K)$
Defin: A slice-torus invariant is a concordance homosphism $\phi: C \longrightarrow R$
satisfying
1. (slice) $\phi(k) \in \mathcal{J}_4(k) \; \forall \; K$
2 (torus) $\phi(T_{p,q}) = g_{4}(T_{p,q}) \forall p,q > 0 \text{ coprime}$
Example: s a slice-torus invariant
s has a lot in common with another concordance invariant T
defined by Ozsváth-Szabó coming from theegaard Floer
homology. In particular, I is also a slice-torus invariant.
(there are wh(x) where s and I differs)
s and I are not related by any formula
$S \oplus T = C = 77 \oplus 77$ Cutiential

Ribbon Concordances and Khovanov Homology No maxima, so order mouters Theorem: (Levine-Zemke) If C: Ko - K, is a ribbon-concordance, then is imjective with left inverse $Kh(\overline{C})$ F_1 C W_{K_1} $W_{K_$ C