· · · · · · · · · · · · · · ·			· · · · ·		
ፍፍካን			· · · · ·		
week 7			· · · · ·		
		· · · · ·	· · · · ·		
Monday	pg 2		· · · · ·		
Wednesday	Pg 10	· · · · ·	· · · · ·		
			· · · · ·		
· · · · · · · · · · · · · · ·			· · · · ·		

No Office Hours today Office Hours on Tuesday 2-3 pm and Wednesday 1045-1145 and ribbon concordances and Khovanov homology Last time: Theorem: (Levine-Zemke) C: Ko - K, is a nibbon concordance, then 14 Kh(Ko) - Kh(Kz) is injective with (off Kh(C) :. inverse $Kh(\overline{C})$ Idea deaths Ē Suppon Saddles RMK when you compose KoxI Something Nice happens saddles Rmic. each birth is paired to a time frames thinking of bitths cobordance as a movie death

birth-deaths determine 2-spheres that are tubed on Idea: to KXI by tubes formed by saddles paired with their duals Key Lemma (Zemke) concordance with n births, Let C: Ko -> K, be a ribbon n sadales C: K, -> Ko (upside down and oppossite) orientation Then CoC: Ko - Ko is isotopic to KoXI with n (geometrically) unknotted, unlinked 2-spheres tubed on Idea of proof of Theorem. unknotted S²¹s behavior of $Kh(\overline{C}) \circ Kh(\overline{C}) = Kh(\overline{C} \circ C)$ outo injective = Kh (id ko II n e another property of Kh. hom = $Kh(Ko \times I)$ = id Kh(Ko)

Upshot: on	ribbon Choranov	concordanceo homology	induce	portici	ularly	nic e	maps	
Q. What invorric	- about ants P	nbbon Concor	dances c	end cla Hhings (pre-Hee	ssical such as forms a gaard	knot Seife Ind ea Floer, p	xt nlier - re-Khova	
Proposition	((Lordo	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$X = S^{3} \times Y_{1} = S^{3} \times I^{2}$ $I^{2} = I = T^{2}$ $Z = T$	$I - C$ $K_{0} - K_{1}$ $K_{0} - \theta$ $K_{1} - \theta$ $K_{1} - \theta$	K_1 is a nibbor , $\pi_1(X)$, $\pi_1(X)$	concord	lance,	then in the interview of the interview o	· · · ·	· · · ·	
		$Y_{1} = S^{3} - C_{1} $ $X = S^{3} \times \overline{L} - \nu (C$ $Y_{0} = S^{3} - C_{0} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Proof of 2 y-dim 4-dim (K-hanale k+1)-handl	added to C e added to X	· · · · · ·					
· · · · · · · ·								

$X = (Y_0 \times I)U$ (-handles U 2-handles
dually $X = (Y, \times I) \cup 2$ -handles $\cup 3$ -handles
$\Rightarrow \pi_i(\gamma_i) \longrightarrow \pi_i(\chi)$ surjective
2. Exercise
$H_{*}(Y_{o}) \longrightarrow H_{*}(X)$ is morphism
2. In X= (Yo×I)U I-hanalies U Z-handles
the no. of 1-handles = no. of 2-handles
and the 2-handles must cancel (-handles
hourslogically
Hence, $\pi_i(X) = \langle \pi_i(Y_0) * F \rangle / \langle r_{i_1,i_n} \rangle$
$r_j \in \pi_i(Y_o) \star F$
$\varepsilon_i(r_j)$ = exponent of x_i in r_j
$n \times n$ matrix $(\varepsilon_i(r_j))$ has determinant $\pm /$
WTS $\pi(Y_0) \longrightarrow \pi(X)$ injective about homomorphisms to a group
Defn. A group G is residually finite if Y g E G, g ≠ 1
\exists homomorphism $h: G \longrightarrow finite group s.t. h(g) \neq 1$
Proposition (Thurston)
ter (Yo) is residually finite

Defn: A homotopy ribbou concordance from Ko to Ki is a locally flat concordance C from Ko to K, s.t. $(\mathbf{x},\mathbf{x},\mathbf{x}) \longleftrightarrow (\mathbf{x},\mathbf{x}) \longleftrightarrow (\mathbf{x},\mathbf{x})$ where $\forall i = S^3 - Ki$ $X = S^3 \times I - C$ $\mathbf{z}_{i} \quad \pi_{i} \left(\mathbf{y}_{i} \right) \longrightarrow \pi_{i} \left(\mathbf{X} \right)$ We will write K. = K. if I a homotopy ribbon concordance from K. to K. Write Ko = Kr if] a ribbon concordance from Ko to Kr $\begin{array}{cccc} Observe: & K_0 \leq K_1 \implies & K_0 \leq K_1 \\ (smooth) & top \end{array}$ Theorem (Agol 2022) Ribbon concordance is a partial order i.e. $K_0 \leq K_1$ and $K_1 \leq K_0 \implies K_0 = K_1$ Resolves a conjecture of Cameron Gordon proof: relies on representation varieties of knot group to SO(N)

Homology Cobordism Group Closed, connected, oriented 3-manifolds (compact, without boundary) Defn. Two 3-mfds Y, and Y, are cobordant if I smooth compact 4-mfd W s.t. $\partial W = -\gamma_0 H \gamma_1$ Remark. This is an equivalence relation Proposition _ Every 3-mfd bounds a smooth compact 4-mfd Proof By Lickovish-Wallace, every 3-mfd Y is integral surgery on a link L in S³ Let X be a 4-mfd obtained by attaching framed 2-handles along $L \in \partial B^4$ Then $\partial X = Y$.

Corollare	
	tny two 3-mfd are cobordant
Defn	Two 3-mfds Y, and Y, are I-homology cobordant if smooth compact 4-mfd W s.t.
1	$L = -\gamma_0 L + \gamma_1$
2	$L_{x}: H_{x}(Y_{ij}; Z) \longrightarrow H_{x}(W_{j}; Z)$ is an isomorphism
	"W looks like a product in terms of its homology"
Remarks	
	Can replace I with Q, Ip, or any ring R
2.	Homology cobordism is an equivalence relation.
Example') 3mfd
	Yx I is a homology cobordism
	· · · · · · · · · · · · · · · · · · ·

Last time. Yo, Y. Z-homology cobordant if I smooth, compact W s.t. 1. 3W = - 1. 11 1. 2. $l_{*}: H_{*}(Y_{ij} \neq) \longrightarrow H_{*}(W_{j} \neq)$ isomorphism i=0,1"W looke like a product in terms of its homology" Remark: can replace I with another ring (eg. Q, Z/QI) Example y any 3-mfd YXI is an R-homology cobordism for any R 4-mfd w/ same 7 homology as BY Example: if y bounds a EH, BY (works for any R) (B4) S3 (B4) remove B4 $\langle = \rangle$ Y~S³ Eltx cobord Exercise IF Ko \sim K, then $S^{3}_{p/q}(k) \sim S^{3}_{p/q}(K_{1})$ $E = \frac{1}{2} \frac{1}{2}$ Recall $S_{P/q}^{3}(k) = S^{3} - \nu(k) \quad U_{\varphi} \quad S' \times D^{2}$

P^{A+g}	λ bounds a disk in $S^1 \times D^2$
Note: (g longit 1. $H_1(S_{P/q}^3(K); \overline{Z}) = \overline{Z}/p\overline{Z}$	udes are already null-homologous) Gofraned longitude bounds a scifert sfc.
2 If $p=\pm 1$ then $S_{p/q}^{3}(K)$ 3. If $p \neq 9$ then $S_{p/q}^{3}(K)$	is an HS^{3} is a RHS^{3}
To see that these 3-mfds our the concordance to build W	e homology cobordant, surger
$ \begin{array}{c} \mathbf{K}_{1} \\ \mathbf{K}_{2} \\ \mathbf{K}_{3} \\ \mathbf{K}_{4} \\ K$	
Exercise If K is smoothly slice, t bounds a @tlB" the g-fold cyclic branch cov	then $Z_q(K) = p^n$ for prime p re $Z_q(K)$ denotes the ter of K

Note
$Z_q(K) = (q-fold cyclic cover of S^3 - \nu(K)) \cup (S' \times D^2)$
Zq(K) pre-image K is S'x 203
The state of the map $z \mapsto z^{2}$ 5^{3} along $pt \times D^{2}$ (in C)
Proof idea: take q-fold cyclic cover of B ⁴ branched over slice disk
Need $q = p^n$ to guarantee that $\Sigma_q(K)$ is QHS^3
Non-example: $\sum_{b} (T_{2,3})$ is not a $\mathbb{Q}HS^{3}$ (see Rolfsen 10.D) $H_{1} \approx \mathbb{Z}$
Exercise Let Y be a RHS ³ , then $Y #-Y$ bounds a RHB ⁴
$\frac{Idea}{Y \times I}$ $\frac{Y}{Y \times I}$

Note: Y_1, Y_2 RHS³ \implies $Y_1 \# Y_2 \alpha$ RHS³ For now, lets focus on ring Z Consider ({ ZHS''s }, #) Q: Y ZHS, Y = S does there exist Y' s.t. Y = S?? A: No Recall, A Heegaard splitting of a 3-mfd Y is a decomposition $Y = H_1 \cup \varphi H_2$ where H_1 is a handlebody of genus g and $\varphi: \partial H_1 \longrightarrow \partial H_2$ is an orientation reversing homeomorphism Handlebody: (A)-2 handlebody of genus 2 Every 3-mfd has a Heegaard splitting Consider triangulation of 3-mfd, then look at 1-skeleton

$E^{X} = B^3 \cup B^3$	
$\underbrace{Ex}_{S'\timesS^2} = \left(S'\timesD^2 \right) $	
Exercise' Find Q S.t.	
$ \left[\left(\rho, q \right) \right] = \left(S' \times D^{2} \right) \cup \varphi \left(S^{1} \times D^{2} \right) $	
E_{xample} $S^{3} = (S' \times D^{2}) \forall \varphi (S' \times D^{2})$ $\lambda \downarrow \rightarrow \land \land \land \land \land \land \land \land \land$	
Defn. The Hergaard genus of 3-mfd Y is the n Heregaard genus over all Heregaard splittings	Minimum .
Example: S ³ is the only 3-mfd w Heegaard genus Example: Heegaard genus of S ¹ ×S ² , L(p,q) is 1	

Theorem (Haken)
Heegoard genus is additive under connected sum
Proof Idea. the connect sum S ² can be isotoped to
intersect Heegaard surface in a single circle.
So Heegaard splitting for Y, # Y2 restricts to a theegaard
splitting for Y, and for Y2
$\mathcal{H} = \mathcal{H}$
Hence, using Hergaard genus, we see that if $Y \neq S^3$, then
$\not = \gamma' \text{s.t.} \gamma \neq \gamma' = S^3$
However for $y \approx \Xi H S^3$, $\gamma \# - \gamma \sim S^3$ since ΞH_*
Y#-Y bounds ZHB4
· · · · · · · · · · · · · · · · · · ·
Defn: The Z-homology cobordism group is
$Q^3 = \left(\xi \neq HS^3 + S^3\right)$
\mathcal{Z}
$\frac{\omega}{1}\left[\left(\frac{1}{2}\right)^{2}\right]$
inverse of [Y] is [-Y]

Q' 15 OZ nontrivial?	
A les	
Rokhlin invariant	
Y ZHS3 (or more generally a spin 3-mfd)	
$\mu(Y) = \frac{\sigma(X)}{8}$ where X is a spin 4-mfd w) $\partial X = Y$	
Remarks: V = 0 V =	
2. If X simply connected, then $w_2(X) = 0 \iff \text{intersection for} $ of X is even	n
3 a) $\sigma(x)$ is divisible by 8	
b) $\sigma(X) \mod 16$ depends only on Y (and not X) $\Rightarrow \mu(Y) = \frac{\sigma(X)}{8} \in \frac{\pi}{2}$	
$\Psi_{1} = \mu(Y_{1} \neq Y_{2}) = \mu(Y_{1}) + \mu(Y_{2})$	•
· · · · · · · · · · · · · · · · · · ·	

Exercise
Check that $M: O_{\overline{z}} \longrightarrow \overline{z}/_2$ is a well-defined
surjective homomorphism $\mu(Z(2,3,5)) = 1$ $\mu(Z(2,3,5)) = 1$
small sphere at origin
Recall 5
$\Sigma(\rho, q, r) = \chi \chi^{\rho} + \chi^{\rho} + \chi^{r} = 0 \int \Omega S_{\epsilon} \subset C^{r}$
$= 200 \text{ Act} \overline{\Omega} = 000 \text{ Act}$
5(0,0,1) is a
Rieskorn homology sohere
for pig,r relatively prime
and a second and a second and a second and a second with a
[Fintushel-Stern 1985] showed B_z^3 infinite gauge theory
[Furnta, Fintushel-Stenn 1990] Oz infinitely generated
$[Fryshow 2002] extsf{g}_{a}^{3} \longrightarrow \mathbb{Z}$ surjective homomorphism
[Dai-Hom-Stoffreger-Truong] $\mathcal{O}_{\mp}^{3} \longrightarrow \mathbb{E}^{\infty}$ surj. homom. () uses involutive the equard Floer hom.

$$\begin{split} & \sum \left(2i+i, 4i+i, 4i+3\right) \text{ generate the DHST infinite rank summand} \\ & \underbrace{\sum i = 1}_{i \ge 0} \text{ nonmivial elements of finite order in } \mathcal{O}_{\#}^{3} \right)^{2} \\ & \underbrace{\text{Note: } Y \cong -Y \implies [Y \ddagger y \equiv [S^{3}] \text{ in } \mathcal{O}_{\#}^{3} \quad \begin{pmatrix}many \\ constrained at each \\ constrained at each \\ manual elements of finite order in \\ & \underbrace{O}_{\#}^{3} \quad \begin{pmatrix}many \\ constrained at each \\ constrained at each \\ each$$

i.e. Y is not order 2 in $\mathcal{O}_{\overline{4}}^{23}$ ⇒ 4 ~-Y 卍Hy *ll* + Galewski-Stern and Matumoto, By earlier work of Manolescu's result implies: Theorem There exist non-triangulable n-dimensional topological manifolds Y n > 5 Triangulations (Manolescu lectures on the Triangulation Conjecture) Defin: A simplicial complex $K = (V_1S)$ consists of · V = finite collection of vertices S = finite collection of simplices power set (where a simplex is an element of P(V)) such that rES and rCD, then TES

We call (V15) an abstract simplicial complex To (Vis) we can associate its geometric realization K constructed inductively on d=0 by attaching a d-dim simplex for each ore S of coordinality d $V = \{1, 2, 3, 4\}$ Example: K = (V, S)5 = { 213, 223, 233, 243, ٤١,23, ٤2,33, ٤2,43, ٤3,43, ٤2,3,43 geom realization; 3 11111/1/1 4