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The closure of a subset S'cS is

(((s) : [ + (s) + = 0 = S']
&
simplex

The star of a simplex te S is

St(t) = 30cs/i = 0]

Example
:

-

E St(t)=



Example:

V = <143 ,7)
S = 9913 .
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.
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The link of a simplexTES is

(r(t) = &o + (l(s+ (i))) = no = 43

(k(933) = 2523
,
943

,
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2k(323) = 9913 ,
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,
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Def: A triangulation of a topological space X is a

homeomorphism from X to a simplicial complex

: X % is not a simplicial

complex because any

& & O pair of Vertices does not

uniquely define
an

* & edge .

&



/againa

·
Exercise is a triangulation of a topological manifold M and

I .

· Ekn-k
,
then Lk(0) is ETHSR-1

2.
A triangulation on M induces a

triangulation on its

Suspension
EM and the link of a come point is m

MXI with

MX303 collapsed to a point called
a come point

mx[1]



Some categories of manifolds :

· topological manifolds
: transition functions on charts are

continuous

· PL manifolds : transition fis are piecewise linear

· Smooth manifolds : transition firs are Co smooth

Defi : A triangulation is combinatorial if the link of

every simplex (or the line of every vertex) is PL-

homeomorphic to a sphere

Observe : If a space X admits a combinatorial triangulation
then X is a PL-manifold

↳ Converse is also true.

Example,a
triangulation of a topological manifold

P = homology sphere with nontrivial it,

eg

.
Poincare homology sphere



~ suspension

(exceptwhen P is sphere

Fa: IP is not a manifold

Ent2 : (Double suspension theorem) (Edwards 1980
,

Cannon 1979)

I'P is a topological manifold homeomorphic to a sphere

Take a triangulation
of P

This induces a triangulation onZ2P

but this triangulation is not combinatorial : link of cone

point is IP which is not even a manifold hence not

PL homeo to a sphere.

l
Question (Poincare 1899)

Does every
smooth manifold admit a triangulation

* [Cairns 1935
,
Whitehead 1946) Yes



Every smooth manifold has a PL structure and hence

is trianguable

Question: (Kneser 1926)

Does every topological manifold admit a triangulation ?

* Depends on dimension :

n = 0
,

1 yes ,
trivial

n = 2 [Rado 1925] Yes
, every

surface has a

PL-structure

n = 3 [Moise 1952] Yes
, every 3-manifold has

a smooth structure

n = 1 [Casson] No
, using casson invariant

, you

can show Freedman's Es is not

triangulable

(Roklin invariant shows that Freedman's

Es manifold has no smooth structure)



-22....FreedmansE diagram=

2 22 2 2

&

2

· boundary is Poincare H*S

[Freedman] every
EHS" bounds a compact,

contractible topological 4-mfd

n = 5 [Manolescu (o13] No.

Question
every topological manifold admit a Ph structure ?

A: depends on dimension

n = 0
,

1
, 2

,
3 Yes, as above

n = 4 No
, Eo has no Pl-structure

n = 5 [Kirby-Siebenmann) No

In topological manifold

Kirby-Siebermann invariant ((M)
+ H

"

(m ; *(2)



u = 5 4)(m) = 0 () M admits a PL-structure

n = 4 -(m)= 0 E M admits a PL-structure

Example: -(s'xEo) + 0

so S'XEg is a topological manifold with no PL-structure

More generally , 2(T
**

X Eo) # 0 for 135 is an

n-dim rfd with no PL-structure

Kirby-Siebelmann invariant

M" top. manifold >5

diagonal DCMXM

r/D) is an IR"-bundle over M topological tangent

bundle of m

TOP(n) = homeomorphisms of"fixing O

TOp = lim TOP (n) infinite dim
. top. group

no

BTOP = classifying space of TOP

i .e.
Top weakly contractible space on which Top

↓ acts properly and freely

BTOP



and 5 : M- BTOP S .
t

.

Th is the pullback :

TM
- ETOP any

bundle will be a pullback

J
I ↓

m - Brop

PL(n) = PL-homomorphisms of IR2 fixing O

Pl = lim PL(n) TO

Fibration: Top/pL- BPL ETOP

↓ >
↓ ↓ BPL - BTOP

k(E/2 ; 3) =

Brop

(see more in Manolescu's Lecture notes)

Obstruction theory
: discusses when

you
can build a lift

BPL

---- ↓ How would you try to lift this map
?

↑ Possibly want to induct along n-skeleton

m-> BTOP

to ann simplex, lift to fiber

on
+1 +(F)

n + 1 simplex boundary lifts toin (fiber)
-

H2 (m ; +n (Top/p)
↓
boundary is aninsphere

but recall fiber something sending simplex
to a group

is a k(E/2 ; 3] sounds like a cochain.

(magic : it's actually a cocycle)



coming from TOP/PL being a k( */2; 3)

2(m) + Hi (m ; ((z) =

H(min(top)obstruction to lifting

More concrete description of D(M) , when Mr has a

triangulation (not necessarily PL) ,
n = 5

for simplicity ,
assume M Orientable

c (k) =E [cr()]o = H(M> ) H(MiOz)n - 4

short exact sequence : Rokhein invariant

r
0 - m- 02- E- 0

induces a long exact sequence on cohomology :

... - Hi(m ; 02)=- H(m; z)= Hi(m ; veru)- ...

↓

< (k) 1 x(m)

i
.
e.n(c(k) = x(m)

Observe:

K combinatorial) <(k) = 0



u(c(k) = 0(m) = 0 E) M admits a combinatorial

triangulation
(possibly different from K)

-

Lasttime :

dimension

in which set

TOP Triangulable PL difference is

mfds dims, s
Smooth

dim35 non-empty
dims 4 EgXS'

Eg
④M

Kirby-Siebelmann invariant

M" top manifold n55

x(m) = H+ (m ; (2)

35 <(m) = 0 E) M admits PL structure

n = 4 x(m) = 0 # M admits PL structure

So in particular, [P admits a PL structure)



Idea that Top/py = k(=/2 , 3) Rudyak's survey article

(P)-structures on Top mfds)

RoughSketch (TOP)-> Sp(T"XD") injective

Spy(m) = set of homotopy PL structures on M

Results on Sp(T
*xDr) imply :

(iv (Topa)/ = 30n he
--BPL

-- ↓

But ifis(T00c) = 0
,
then every map

M- BTOP

lifts to BPL but
you can use the Rokhlin invariant

shoSdoes not admita Pare
a

c (k) = E [ur(o)]o - Hn(m ;) = Hi(m ; OE)
otkn

- y

short exact sequence coming from Rokhlin invariant

0 = keru--- 0(x)

and long exact sequence



... - Hi(m ; 02)=- H(m; z)= H(m ; veru)- ... (**)
↓

< (k) 1 x(m)

i
.
e.n(c(k) = x(m)

(**) tells us

Madmits
=> 6(*(m)) = 0 =H

*

(m; kerm)
a triang

ulation

Sr
also the due to Galewski-Stern

,

Matumoto

They also showed that
#)

for
every

135
,

7 M2 with

(*) does not split s(t(m))+ 0

Manolescu proved (*) does not speit

Can use steenrod squares to
give examples of

non-triangulable top mfds :

S .
es

.

0 -- < ->14 ->2 - 0

connecting
hom in I . e . s .

is Sg

Hh(m; (2)=<H
+ (m; *(2)

Exercise :

If dim M 5 and Sg((m) O then

s(Δ(m)) + 0



Example : (Kronheimer)
Let X be a simply connected 4-mfd with intersection form

((i) ~- di (
and & (X) #0 (Exists due to Freedman)

Freedman also implies- orientation reversing homeomorphism

f : X+ - X

⑪
m: = (X * F)/(X , 0) ~ (f(x) , 0)

mapping torus

Exercise: Sg(Δ(m) + 0

Note : M is non-orientable;
all non-triangulable 5-mfds

are non-orientable

po = circle bundle over M associated to oriented

manaisdouble coverelect defined using

Pin(2) - equivariant Seiberg - Witten Floer homology

# = [x + yi +

zj + wk)x , y ,
z

, we mz = GKj

guaternions ij = k



unit guaternions S(TH) = Su(z)
L unitary matrices wh det = 1

↳ matrices of this form :

3(at di)) abic a 3
az + 62 + 12 +d= 1

S = cn S(t)

Pin() = S'us; uj = #
· 2

= -
↓

i ij
O

ij = -ji

- 8
o I -jo · j

⑧

- j je

Si S'j

To a 3-mfd Y (with some extra data) one can associate a

space I Cup to homotopy) . The space I admits an

action by Pin(2)

SWFHPin()(y) = Pin(2) - equivariant homology of I

↓
Seiberg Witten

Floer Homology



Equivariant (cohomology : Borel constructions

&al: Define a homology theory for spaces with

a group action

Let X be a space with a topological group
G acting

on it

X3a

Example : gads by rotation

first guess
: quotient S4 :

= interval (contractible)

(action not free-fixes N .
and S

· pole)

all homotopy groups are trivial

-~classifying space
Be

contractible space on which G acts
-

↓ properly and freely

BG ↳
for CW complex, this

is when it is

Example E Ea = IR

contractible

d
Remark:

Ba = S

FTF(BG)group cohomology
of G

Example:
G = 142 EG = 59

↓

BG = Hep
o



Example
:

G =S Ea = So

↓
Ba = epc

H* ((PO); <)=[u]

degU
= 2

Example : G = Su(2) = unit guaternions

Exercise :

-

1 BSu(z) = EHpa

2. Compute cohomology ring H* (HPO;)

Homotopy
quotient

EG XX = EaxX/G
G acts on EGXX via

diagonal direction

Action of G on EGXX is free since 6 acts

freely on EG

p
: En +X- EG/a = BG



So we have a bundle X- EGXaX

↓
BG

&lovelcohomologyorguivariant cohomology of
X
& 4

is

H * (X j R) : = H
+

(EGXX ; R)

Example
:

G trivial group

H(X ; R) = H
* (XjR)

Example :

-

X contractible

H(X ; R) = H* (BG j R)

Example
,
a
freely on X

projection EG XaXX/G

=> H* (X , R) = H
* ( */ajR)



Note: p
: EGxaX-> Ea/a = BG

pf : H
+ (BG ; R)- H

* (EGXXjR) = H(X j R)

=> H(X ; R) is a H
* (BGjR) - module

compose p* with cup product

Also
, HY(XjR) is a H

*

(BGjR) - module

compose p
* with cap product

Example:&S by
rotation (along z-axis)

S- S
°

XS
given

a fibration,

there's a spectral↓ associated
sequence

Epo
to it

Spectral sequence

Ho((PO) O H2((pO) ↓ # * ((PO) ...

O O O O O

Ho (CPO) O H < ((PG) O HY((pg) ...

higheotials dat Iti down
see full computation ,

Tu Ch .7

2 +i right
"Introductory Lectures on

equivariant cohomology
"



Upshot : SWFHRin()(4) is a module over H*(BPin(z)

Q : What is H
* (BPin(2)) ?

-

unit guaternions

Pin(z) = Su Sj c su(z)c It

In fact
,

7 a fibration Pin(2)-> Su(z)

↓
IRp2

sus) - &x +yi + zj + wk)x4yz zi+ wa = ) x , y ,
z

,
w -R]

-of this is S3

IRp2

Exercise :

-

projection map p is composition of the Hopf fibration

map
and antipodal map on S2

Esu(z)
fibration IRp"-> BPin(2) 4t

↓ BPin(z)-+ Bsu(z)

BSU(z) = THPO



Spectral Sequence with F = #/2 coefficients

# O O O IF O o o

# O O O IF O O ·
.

- -

F O O O IF O O o

No room for higher differentials

H+ (BPin() ; IF) = #(QiV]/p

deg Q
= 1

deg
V = Y




