8803						
Week 8						
Monday pg 2						
Wednesday pg	12	· · · · ·	· · ·	· · · · ·	· · · · ·	

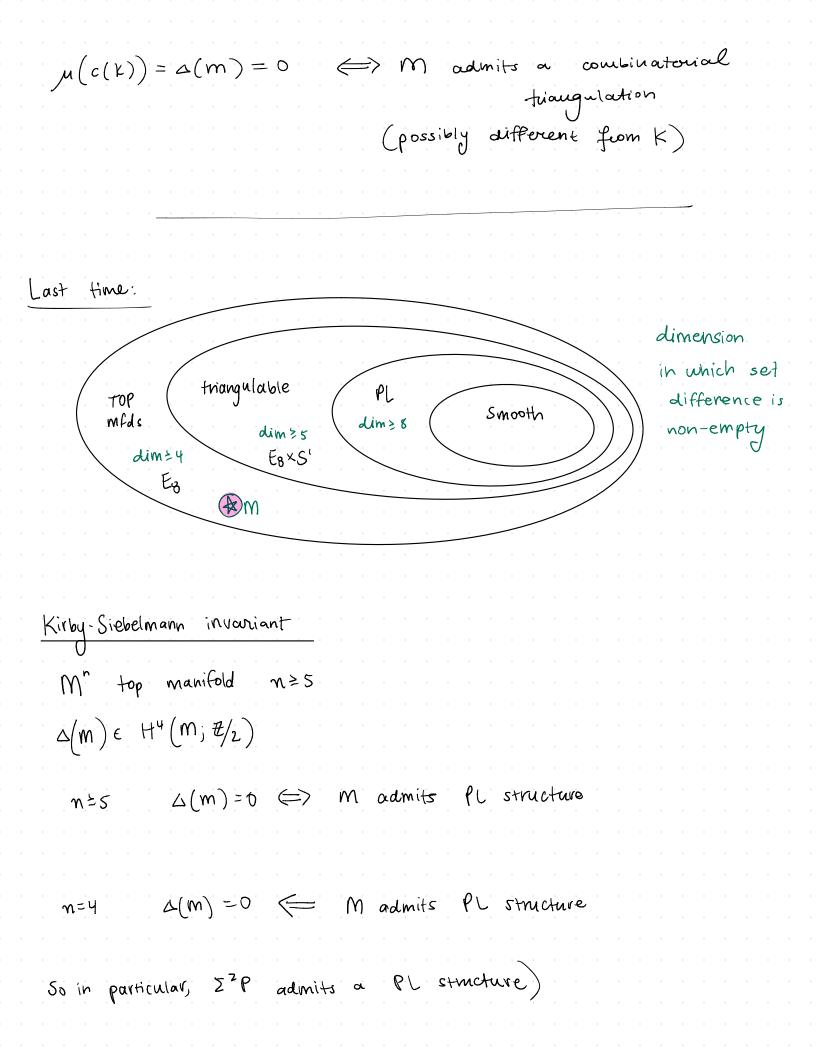
Last time:
$\left[\text{manolescu} \right] \mu(\gamma) = 1 \implies \gamma \text{ not order } 2 \text{ in } \mathcal{O}_{\overline{z}}^3$
By work-of Galewski-Stern, Matumoto, Huis implies ∃ non-triangulable n-dim top manifolds ¥ n≥5
Simplicial complex $K = (V, S)$
Example: $V = \{1, 2, 3, 4\}$ $V = \{1, 2, 3, 4\}$ $Z = \{2, 3, 4\}$ $Z = \{2, 3, 4\}$ $\{2, 3, 4\}$ $\{3, 4\}$ $\{2, 3, 4\}$ $\{3, 4\}$
The closure of a subset $S' \in S$ is $Cl(S') = \xi \tau \in S \tau \in S' \}$ $t_{simplex}$
The star of a simplex $\tau \in S$ is $St(\tau) = 2 \sigma \in S \tau = \sigma]$
$T = 5t(\tau) = $

	E13, {23, ₹33, {43, {2,33, {2,13, {3, 43, {2,3, 43}}} E2, 3, 43 } , {2, 73, {2, 3, 43}}
The link of a simplex $\tau \in S$ is $L \mid k(\tau) = \{ \sigma \in Cl(S+(\tau)) \mid \tau \cap$ $L \mid k(\{33\}) = \{ \{23, \{34\}, \{22, 43\} \}$ $L \mid k(\{13\}) = \{ \{13, \{33\}, \{43\}, \{3, 43\} \}$	$\boldsymbol{\sigma} = \left(\begin{array}{c} \mathbf{\sigma} \\ \mathbf{\sigma} \\$
<u>Defn</u> : A triangulation of a topological homeomorphism from X to a simplic	space X is a cial complex
	is not a simplicial complex because any pair of vertices does not uniquely define an edge.

Yes, a triangulation Also not a triangulation consider edge Lk(σ) $\int Lk(\mathbf{v})$ Exercise; is a triangulation of a topological manifold M and IFK $\sigma \in K^{n-k}$, then $Lk(\sigma)$ is H_*S^{k-1} A triangulation on M induces a triangulation on its suspension ZM and the link of a cone point is M 2. MixI with a point called a cone point M× {0} collapsed to M× {13

Some categories of manifoldo. transition functions on charts are continuous · topological manifolds: transition fu's are piecewise linear · PL manifolds: transition fn's are Co omooth · Smooth manifoldo: Defin A triangulation is combinatorial if the link of every simplex (or the link of every vertex) is PL-homeomorphic to a sphere Observe: If a space X admits a combinatorial triangulation then X is a PL-manifold La Converse is also true. Example. Non PL triangulation of a topological manifold P = homology sphere with nontrivial TC, eg Poinraré homology sphere

Fact 1: ZP is not a manifold (except-when P is sphere)
Fact 2. (Double suspension theorem) (Edwards 1980, cannon 1979)
Z ² P is a topological manifold homeomorphic to a sphere
Take a triangulation of P
This induces a triangulation on Z^2P
but this triangulation is not combinatorial: link of cone
point is ZP which is not even a manifold hence not
PL homeo to a sphere.
Question: (Poincare 1899)
Does every smooth manifold admit a triangulation
A [Cairns 1935, Whitehead 1946] Yes


Every smooth manifold has a PL structure and hence is trianguable Question (Kneser 1926) Does eveny topological manifold admit a triangulation? A Depends on dimension. yes, trivial n = 0, 1[Rado 1925] Yes, every surface has a Pl-structure n = 2[Moise 1952] Yes, every 3-manifold has a smooth structure n = 3[Casson] No, using Casson invariant, you can show Freedman's Eg is not triangulable n= 4 (Roklin invariant shows that Freedman's E8 manifold has no smooth structure)

Freedmans Eg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
· plumbing	
	is poincaré H _× S ³
[Freedman]	every ZHS ³ bounds a compact, contractible topological 4-mfd
$n = \frac{1}{2}$	[manolescu 2013] No
Does every topolo	ogical manifold admit a PL structur
depends on dim	Pragion
	Yes, as above
m = 0, 1, 2, 3 $m = 4$	Yes, as above

$n \ge 5$ $\Delta(m) = 0 \iff M$ admits a PL-structure
$n=4$ $\Delta(m)=0 \iff M$ admits a PL-structure
$E_{\text{xample}} \Delta(S' \times E_8) \neq O$
so S'XE8 is a topological manifold with no PL-structure
More generally, $\Delta(T^{n-4} \times E_8) \neq 0$ for $n \ge 5$ is an
n-dim mfd with no PL-structure
Kirby-Siebelmann invariant
M^n top. manifold $n \ge 5$
dragonal DCMXM
$v(D)$ is an IR^n -bundle over M topological tangent
bundle of M
TOP(n) = homeomorphisms of IR" fixing O
$TOP = \lim_{n \to \infty} TOP(n)$ infinite dim. top. group $n \to \infty$
BTOP = classifying space of JOP
i.e. TOP weakly contractible space on which TOP acts properly and freely BTOP

s.t. TM is the pullback: any bundle will be a pullback TM ----> ETOP M = BTOP PL(n) = PL-homeomorphisms of IR" fixing O $PL = \lim_{n \to \infty} PL(n) \subset TOP$ Fibration : ETOP s BPL TOP/PL -BPL - BTOP $K(\underline{H}_{2}, 3) =$ BTOP Manolescu's lecture notes). (see more Obstruction theory: discusses when you can build a lift 7 BPL How would you try to lift this map? Possibly want to induct along n-skeleton M - BTOP to an n simplex, lift to fiber $\sigma^{n+1} \mapsto \tau \sigma_n(F)$ n+1 simplex boundary lifts to The (fiber) boundary is an n-sphere H"+" (M; TON (TOP/PL)) sonnetting sending simplex to a group sonnals like a cochain. (magic: it's actually a cocycle) but recall fiber is a K(E/2; 3)

coming from TOP/pz being a K(Z/z;3) $\Delta(\mathbf{m}) \in H^{4}(\mathbf{m}; \mathbb{Z}/2) = H^{4}(\mathbf{m}; \mathbf{t}_{3}(\mathbf{T} \circ \mathbf{P}/\mathbf{P}_{L}))$ obstruction to lifting I More concrete description of $\Delta(M)$, when M^n has a triangulation (not necessarily PL), n = 5 for simplicity, assume M orientable. $c(K) = \sum_{\sigma \in K^{n-y}} \left[Lk(\sigma) \right]_{\sigma} \in H_{n-y}(M; \mathcal{O}_{\mathbb{Z}}^{3}) \cong H^{4}(M; \mathcal{O}_{\mathbb{Z}}^{3})$ Rokheln invariant short exact sequence: $0 \longrightarrow wer \mu \longrightarrow \mathcal{O}_{\overline{z}}^{3} \xrightarrow{\mu} \overline{z}_{/2}$ _» D induces a long exact requence on cohomology: $\Rightarrow H^{4}(M_{j} \mathcal{O}_{\mathbb{Z}}^{3}) \xrightarrow{\mu} H^{4}(M_{j} \mathbb{Z}/_{2}) \xrightarrow{\delta} H^{5}(M_{j} \ker \mu) \longrightarrow$ $c(k) \mapsto \Delta(m)$ i.e. $m(c(k)) = \Delta(m)$ Observe K combinatorial $\implies c(k) = 0$

$\longrightarrow H^{4}(M_{j} \mathcal{O}_{\mathbb{Z}}^{3}) \xrightarrow{\mu} H^{4}(M_{j} \mathbb{Z}/_{2}) \xrightarrow{\delta} H^{5}(M_{j} \ker \mu) \longrightarrow (\times$	*)
$c(k) \mapsto \Delta(m)$	
i.e. $\mu(c(k)) = \Delta(m)$	
(**) tells us	
M admits $\implies S(\Delta(m)) = 0 \in H^{5}(M; ker \mu)$ a triangulation	
The have show to Contained Storie Matumoto	
also true due to Galewski-Stern, Matumoto	
They also showed that \iff for every $n \ge 5$, $\exists M^n$ with (\divideontimes) does not split $\iff S(s(m)) \ne 0$	
Manolescu proved (*) does not split	
Can use Steenrod squares to give examples of non-triangulable top mfds:	
s.e.s $D \longrightarrow \mathbb{Z}/_2 \longrightarrow \mathbb{Z}/_2 \longrightarrow \mathbb{Z}/_2 \longrightarrow D$	
connecting hom in l.e.s. is Sg	
$H^{k}(\mathfrak{m}_{j} \neq /_{z}) \xrightarrow{S_{\mathfrak{B}'}} H^{k+1}(\mathfrak{m}_{j} \neq /_{z})$	
Exercise if dim $M \ge 5$ and $S'_{q}(\Delta(m)) \ne 0$ then $S(\Delta(m)) \ne 0$	

Example (Kronheimer)
Let X be a simply connected 4-mfd with intersection form
$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & $
and $\Delta(X) \neq O$ (Exists due to Freedman)
Freedman also implies 3 orientation reversing homeomorphism
$f: X \longrightarrow -X$
$\widehat{\mathbb{W}}_{5} = \left(X \times I \right) / \left(x, o \right) \sim \left(f(x), o \right) \qquad \text{mapping torus}$
Exercise: $S_{q}'(\Delta(m)) \neq 0$
Note: M is non-orientable; all non-triangulable 5-mfds
are non-orientable
p ^b = circle bundle over M associated to oriented double cover
Manolescu's invariant $\beta(\gamma) \in \mathbb{Z}$ defined using
Pin(2)-equivariant seiberg-Witten Floer homology
$H = \{ x + yi + z \} + wk x_1y_1z_1, w \in \mathbb{R} \} = \mathbb{D} \oplus \mathbb{C} \}$ quaternions $ij = k$

 $S(\mathbb{H}) = Su(2)$ unit quaternions () unitary matrices w det=1 L'matrices of this form: $\begin{cases} \left(\begin{array}{c} a+b \\ -c+di \\ -c+di \\ a-bi \end{array}\right) \left|\begin{array}{c} a,b,c,d \\ a,b,c,d \\ a^{2}+b^{2}+c^{2}+d^{2}=1 \end{cases} \end{cases}$ $S' = (C \cap S(H))$ $P_{in}(z_{i}) = 0 S' U S_{j}^{i}$ Ċ $C \cup C_j = H$ 12=-1 ij = - ji -j) ۱ -| 1 . <u>-ĭ</u> ji 5'j 51 To a 3-mfd Y (with some extra data) one can associate a space I (up to homotopy). The space I admits an action by Pin(2) $SWFH_{\mu}^{Pin(\nu)}(Y) =$ Pin(2) - equivariant homology of I Seiberg Witten Floer Homology

Groal'	Define a homology theory for spaces with a group action
	be a space with a topological group G acting on it X^{2G}
Exolmply	e. Sz Ds' by rotation
first g	vess: quotient $S^2/_{S'}$ = interval (contractible) (action not free - fixes N. and S. pule)
Classif	ying space BG all homotopy groups are trivial EG weakly contractible space on which G aets properly and freely
Classif	ying space BG all homotopy groups are trivial EG weakly contractible space on which G aets properly and freely BG for CW complex, this is when it is
Exaumpl	ying space BG , all homotopy groups are trivial EG wedely contractible space on which G acts properly and freely BG. for CW complex, this is when it is

Example: $G = S^{*}$ $E = S^{\infty}$ $\int B G = C P^{\infty}$
$H^*(\mathbb{C}P^{\infty}); \mathbb{E}) = \mathbb{E}[\mathcal{U}]$ deg $\mathcal{U} = 2$
Example: $G = SU(2) = unit quaternions$ Exercise:
1. BSU(2) = IHP [∞] 2. Compute cohomology ring H*(HP [∞] ; Z)
homotopy quotient:
$EG \times_G X = \frac{EG \times X}{G}$ G alts on $EG \times X$ via diagonal direction
Action of 6 on EGXX is free since 6 acts Freely on EG
$p: EG \times_G X \longrightarrow EG/_G = BG$

So we have a bundle X>	$Ea \times a \times$		
	BG		
Borel cohomology or equivariant	whomology	of	
$H^*_{G}(X;R) = H^*(EG \times_{G} X;R)$			
Example			
G trivial group $H_{a}^{*}(X; R) = H^{*}(X; R)$			
Example			
X contractible $H_{\alpha}^{*}(X_{j}R) = H^{*}(BG_{j}R)$			
Example			· · · · · ·
6 acts freely on X homotopy projection EG XG X equily-	X./G		
\implies $H_{a}^{*}(X,R) = H^{*}(X_{a},R)$			
Example: 6 acts freely on X homotopy projection EG XG X equily-	X./G		

Note:	p.Eu×a×	→ E	$G_{4} = BG$		
p*: H	*(B(1; R) -) H	:* (ЕЦ ×а Х ј Г	2) = H	$\mathcal{L}_{\mathcal{L}}(X; R)$
	$H^*_{\alpha}(X; R)$	is a	H*(Búj ₽)-	- module	
Comp	ose p* w	ith cup	product		
Also	$H_{\star}^{G}(X_{j}R)$	is a f	+*(B4,R)-w	lodule	
	supose p*	with	cap product		
Example	z z s' by	rotatio	n (along	z-axis	
	$S^{2} = \frac{1}{2} S^{2} = \frac{1}$		$\times_{s'}$ S'	given a thoreat seque	s a speetral nee associated to it
Spectral se	quence	· · · · · ·		· · · · ·	
H°(©?~~) ⊳	O · · · · · · · · · · · · · · · · · · ·	H²(¢°∞) 0		H ⁴ (CP [∞])
H°($(p^{p^{\infty}})$	• • • • • • •	$H^{2}(\mathbb{C}P^{\infty})$		Ηч(Cp∞)
higher d	2+i [+i 2+i	down right	Intro	ductory 1	tation, Tu Ch.7 veetures on nt cohomology"

Upshot:	$SWFH_{*}^{Pin(2)}(Y)$ is a module over $H^{*}(BPin(2))$
Q. Whe	at is $H^*(BPin(2))$? _ unit quaternions
$f_{in}(z) =$	$S' \cup S'_{j} \subset SU(2) \subset H$
In fact,	$\exists a \text{ fibration } Pin(2) \longrightarrow Su(2)$ $\int IRP^2$
	S' U S'; $\longrightarrow \mathcal{Z} \times +yi + \mathcal{Z}j + \omega k = x^2 + y^2 + \mathcal{Z}^2 + \omega^2 = j \times y + \mathcal{Z} + \omega \mathcal{Z} + y^2 + \mathcal{Z}^2 + \omega^2 = j \times y + \mathcal{Z} + \omega \mathcal{Z} + \mathcal{Z} + \omega^2 = j \times y + \omega^2 = j \times y + \mathcal{Z} + \omega^2 = j \times y + \omega^2 = j \times z +$
Exercise project map	ion map p is composition of the Hopf fibration and antipodal map on S^2
fibration	$RP^{2} \longrightarrow BPin(2)$ $BPin(2) \longrightarrow Bsu(2)$
	$BSU(2) = HP^{\infty}$

Speetral	Sequence	with	F = E/2	coefi	fici ent	5		
	· · · · · · ·		 D .	F I		0	, 14 17 17 17	
F.	0	0		F	0		14	y 7 m
	· · · · · · ·						, L L	
	n for hig $in(z)$; F)							
	deg $Q^{=}$ deg $V^{=}$:	· · · · · · · · · · · · · · · · · · ·					

•																																		
			•													•	•	•								•								
. a																																		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	
											4			4								·			*									