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Lasttime :

Kirby-Seibennman invariant

mr top mfd
,

0 (m) + Hi (m; (()

n55 5(m) = 0 =) M admits PL structure

n = 4 0(m) = 0 E m admits PL structure

BPL

---- ↓
m- BTOP

Proposition (Kirby-Siebennman)

A top mfd M2, n =5, admits a PL structure

7)

its top tangent bundle admits a PL structure

Equivariant (co-)homology : Borel construction

H (X ; R) = H
+ (EGXX j R)

module over H
* (BG ; R)



S'-equivariant homology #=
27

S- 58 H5((p, F) = IF[u]

↓ degU = 2

Cpo = BS'

Hs(X ; 1F) module over FU]
↓

Recall : is a principal ideal domain for field I
-

Any finitely generated module M over[U]

(non-canonically) isomorphic to

Fu]u/(i)i= 1

& ideal gen . by polynomials
wa m

torsion parts
free parts

Moreover, if M is graded ,
then each polynomial pi

must be homogeneously graded it.

Pi = Hi for some mi

Note: + U + 1 is not homogenous.-

ut is.



Hence m= #Cu]oFeilub/uni

where FLU] denotes F(U] where gr1
= d.

convention to line up with Heegaard Floor conventions,

from now , deg U = - 2

Suppose N = 1. Then we can define

d(m) = max(gr(x))x = m
,
u

*
x +00k0]

Example:
F = F(u]/

* -
g

O
MEF(u] @ IF

M =
ux

uy - 2 = IF[u](x> + IF(u](ux +y)

du - 4

- b For >0

↓ i U*M is I-dim

!



#in(2) - equivariant homology

#* (BPin(2) ; IF)=F(Q ,V]/Q3

*Conventions: deg Q = -

deg
V = - 4

Seiberg-Witten Floer homology
- eats a 3 rfd and outputs

I
Pinkhomology

Takeaway:This
is a

a er BG

SWFHPn(2)(Y) module over F(Q ,V3/@

Note:(Q ,
V]/as not a P

. I
.

D.

eg. [Q ,v] not principal

roughly picking
Manolesce proved that for NX) outa

invariant

3
UN · SWFHPin(2)(y) is 3-dim Xy

,
Xz

, X3

&
and QX3 = X 2

losing info on

Q-x3 = QX = X /

the torsion pieces



Define max Egr(x))xe SWFHG)(y), for NO
,
VNx*0,

and VW . Xe [mQ23
"X

,

" ↓
picking out the Xi part

because Q does not

annihilate X2 or X3

B(y) = max Egr(x)/x- SWFHPin()(y) for NSO
,
VN o X # O,

QVN . x + 0
,
amx = 03

"X
,

"

-

C(y) = maxEgr(x)/x+ SWFHPin()(y) for NSO
,
VN o X # O,

Q
-

VN . x + 03
"X"

3

Renormalize: a = E B = By=

Theorem (Manoesal)
1. x , B,J are invariants of homology cobordism

2. Bmod 2 = Rokhlin invariant

3. B) -y)= - B(y)



SWFHPin()(y) is closely related to involutive Heegaard

Floer homology (Hendricks - Manolesce), a refinement

of Heegaard Floor homology (Otsvath-Szabo

Heegaard Floer and Knot Floor homology have
many

applications to homology cobordism and knot

concordance.

Heegaard Floer homology

- invariant of 3-mfds
, output algebraic object given the

"right kind" of input.

Heegaard chain

HF
-

(76)
diagram If u

complex
-

for Y CF- (75)
= Hy(CF-(Y))

free, fin
. gen. fin - gen graded

graded chain module over #[U]

complex over

IF[u] degu
= - 2

Remark:
-

HFY) isomorphic to S'equivariant SWFH(Y)

by work of Kutluhan-Lee-Taubes
, Colin-Ghiggini-Honda,

Manolescu-Lidman



HF- (Y) = 0 HF
-

(y , 5)
Sespin'CY)

Remark: spin'(1)e H . (Y;) = H2(Y;)

Osrath-Szabo showed that for y a &HS

HF-(Y , s) = F(U]OF(/y - Sospina)

Some say Meegaard Floor hom. is T&FT-like :

A cobordism W : Yo -> Y
,

induces a module

homomorphism Fw : HF(Yo)- HEY .)

Other Flavors :

s .

es . 0 Fu]- F(u]-F- 0

mult

0 CF-(i)= CF
-

(d)- PF(z)- 0

U

F(T) is obtained from CF(7t) by setting U= 0.

*set U = 0 first and then take homology



HF(y) = H + (cF(75)]
weaker than HF-(but sometimes easier to work with]

Example-) = (x , y ,z)F(u]

2x = 0
Kera = <x,z7

2y = Uz ima = <Uz]

2z = 0

H ((F
-

(H)) = #[u](x> 0 IF(z)

EF(76) = (x , y ,z) #

differential

E 2
Ker2 = <X , y ,z)

is same
ima = <0)

but set u = 0
2z = 0

Hx(cf(7f)) = #3

Exercisethat NF(y) is determined by HF(4)

(but not
by just setting

150 !)



S
.
e . S .

inclusion cover
-

0- 1F(u)- F(u ,
u] F(u,u+

]/Ecu]-0

0-> CF - (76)-> CF-(7f)* (u)F(u,
u

=] - CF+ (f)- 0

w
call this CFS

HF +

(y) = Hx(CF + (Y))

HF
*

(y) = Hx(CF
*

(y)
E turns out that this invariant is fairly boring

↳ if y QHS3
,

then HFP(Y , s)= [u,U-]

Exercise: If Y &HS3 show that HFTV) is determined

by HF-(Y)
(and vice versa) I↓

contain the same amount of info. in contrast

toF which contains strictly less.

Flavors are more useful in dif
. contexts.



#Notation: (F°(Y)
,
HFOCY) where 0 =-

, 1
,

d

depends on choice of

Heegaard diagram but

knots in 3-mfds : same for Y.- -

A hull-homologous knot K in X induces d filtration

d
on CFO(f) nested family

of subcomplexes

... = F ...

The associated graded complex is

gCFk(Y , K) = Fi/Fin

↓
"Hence" an abuse

of notation

knot Floer homology

HFK (Y , () = He)F/)

filtration gives a 2nd grading ,
so bigraded

m = homological (Maslov) grading
&

s = Alexander grading coming from filtration
&



H (Y , K) with F= coefficients is bigraded

rector space

Theorem (Ozsvath-szabo)

#(S3 , K) categorifies @a(t) ;

-x(t)=[ ()mtdim Hm(k , s)

-Example m

F (T2
,
3) # S

IF

If

Dizs(t) = E -1 + +

Exercisen(t) = g(k)
positive

I
deg Dn(t)

= highestpower
symmetrized Ex deg(t - 1 +ti) = 1



Theorem (Ozsrath-Szabo)
-

HFK detects genus ,

g (k)
= max Gs/HFk(ks) =03

G
tells you what genes of K

is



-asttimeFloer homology HFO(Y)

Knot Floer homology HFKO(Y)

#FK(y) categorifies (p(t) Alexander grading-
*x(t)= (1)mtdim HFm(k)

↳ homological grading
deg 0x(t) = g(k)

Theorem (Ozsrath-Szabo)
-

HFK detects genus ,

g (k)
= max Gs/HFk(ks) =03

M

Example :

(Th ,3) F s

If 6
Enter chan is I

If ↓
↓

Eulerchan-1
Euler chay

=I
in this

column

t - 1 + t



defn :
-

A knot KCS3 is fibered if so-K is a
fiber bundle

over S

Exercisek is fibered
, then Dait) is monic

Theorem : (aniggini , Ni)

-

HFK detects fiberedness

1 is fibered # HFK(k , g(k)) = IF

-HomoOstipsiszam
such that in squares are marked with X's and o

squares are marked with O's such that

1 . Each column has exactly one O and one X

2
. Each now has exactly one O and one X

3. No square has both an 0 and an X



Example:
To get an oriented link :

↑ In each column connect X to 0

In each now connect O to X

st . Vertical strands are undercrossings

Q : Can every link
be represented by a grid diagram

?

A : Yes

⑮
↳ but not an over crossing

to fix thism t
Reidemeistermoves" for grid diagrams

: Grid moves

Column commutation :

I
- X

↳- -

S O

↓ I I T- X
- 0

- X - X

Hom, Jennifer C
over

Hom, Jennifer C

Hom, Jennifer C
____



Notallowed :

O

interleaved
O

X

X

Row commutation : defined analogously

Stabilization/destabilization :

stab

nxn grid
us (n + 1)x(n + 1) grid
Fu

destab

O X XiNEoYx
X : NW

X0

& &
⑧

O
⑧ X

oX

X O

xisw 0Se o X

O X

O

O

manalogously de/stab along an O

Exercisei that column/row commutation
, destabilizationa

do not change isotopy class of link



Theorem (Cromwell)

Two planar grid diagrams represent the same link

#

they can be related by a finite sequence sequence of

commutation and de/stabilizations

Toroidal Grid Diagrams :

X- o x- 0 cyclic permutations of

x- o I ·Fo
columns yields same

I knot·x Y
X-0 X- v Similarly for cyclic

permut . of rows.

Goal
:

Definea bigradedchaincomplextoroidas
invariant

,
and whose graded Euler char is(k(t)

&

Grid States : S(Q) = bijections between vertical circles

and horizontal circle

= Sn



Example1 :

6 ·

· xO y
= (123456) (row C

X O

5 ·

X O

4 ·

⑧ X
3 ·

O X
2 ·

X O
I ·

123456

Example
2

a
O = = (j235)X O

5 ⑳
X O

4 ·
⑧ X

3 ⑳
O X

2 ·

I * O

I 23450

⑧
S X

·6 · ⑧

X O

5 . O

4

3 · Example. X X

&X O
I ·

123456

Suppose y ,
zeS(G) s i

t
. Y

and I
agree in exactly m-2 points

consider the 2 points in y and the 2 points in z where

they disagree

-Y
Connect these 4 points to form a rectangle r z

I goes from y toz



y's are in NE
,
SW corners

,
called initial corners

Es in NW
,

SE corners
,
called terminal corners

y ,
z - S(Q)

Rect (y ,z) = set of rectangles from y to z

Note:

1 )) /Rect(y ,z)) = S
if
y

and z agree in m-2 points

otherwise & Recall toroidal ,
so

1 outside" rect as well

⑧

2) Let reRect(yiz) · 6 ·

S X
⑧·

X O

5
then

y nInt(r)
= znEnt(r)

.
O

X
4

3 ·

X

X O
I ·

123456

Den: A rectangle reRect(y ,7) is empty if

yn In
+ (r) = znInt(r) = &

Rect(y ,z) = set of empty rectangles from y
to >



Bigrading on grid states

p
= (p+, pz) g

= (g ., (2)

define pag if p , <q ,

and
proga

·
G po

&
·

P q

pag pkgg4p

Den: Let P and Q be finite collections of points inA

define [(P ,Q) = #5(p ,g)/peP, g + Q
, pag3

J(p , 9)=p , a)

+F(a ,
P)

D = set of O's

X = set of X's 3 half integer words

yeS(Q) integer cords

fundamental domain(0 .n) x (0 . n)



D : Mp(y) = J(y ,y)- 25(y ,D) + j(p, a) + 1

= J(y - 0
, y

- a) + 1

Mx(y) = 5(y - X
, y

- x) + 1

#efr:Maslor grading : M(y) = Mp(y)

Alexandergrading : A(y) = I (Mp(z) -Mx(y))-

Proposition

The functions M : S(Q) +E
,
A : S(Q)- # are

well-defined. Moreover
,

M is characterized by the

following two properties :

NWO
1 . Let y be the grid state consisting of the upper left

corners of the O squares,

then M(yNwp)=
2. If Rect(yiz) O

,

then M(y) -m(z) = 1 - 2# [rnP3 + 2 SynInt(r)]

Up to an overall additive constant
,
M is characterized by

veRect(y ,z)

Aly) - A(z) = # [rnX] - #Ern03



The fully blocked grid chain complex :

EC(() = bigraded chain complex over IF=27)

generated by S(Q)

N
-

indicates flavor 2 mod 2 no
other point of y inside of them

Gax(y) = [ # Rec+(y,z)) +X = rnD = gy -z

z + S(()

shows up often.

Rect
,

x(y ,z)

Exerciselowers Maslovgrading by 1 and preserves Alexander
P

,
X grading.

Define: EH(k) = H
+ (C(Q)

Exercises:
M a+ (G)

(c)
X - O

I .
X I I

N # S #
o - X

97 #
g

these are toroidal

↓

99 m

2,

T
Show that+ (G)

# S

#F2

#



EH(G) is not a knot invariant !

However,

Theorem :

Let & be an nxn toroidal grid diagram for K.

LetW be the 2-dim Vector space

M

#
Then 7 a bigraded vector space GM (G)=F(k) S

.
+-

1. ()=H() WentL
2. G(G) is a knot invariant


