	Week 9 Monday pg 2 Wednesday fg 14	Week 9 Monday pg 2 Wednesday pg 14													
Monday pg 2 Wednesday pg 14	Monday pg 2 Wednesday pg 14	Monday pg 2 Wednesday pg 14	8803	· · · ·	· · ·	· · ·	· · ·	· ·	· · · ·	· ·	· · ·	· · ·	· · ·	· ·	•
Wednesday pg 14	Wednesday Pg 14	Wednesday fg 14	Week 9				· · ·	· · ·					· · ·	· · ·	•
Wednesday pg 14	Wednesday pg 14	Wednesday fg 14	Monday	pg 2											
			Wednesday		• • • •										

Last time. Kirby-Seibennman invariant M^n top mfd, $\leq (m) \in H^4(M; \#/2)$ $n \ge 5$ $\Delta(m) = 0 \iff M$ admits PL structure M admits pl structure n=4 △(m)=0 M BTOP Proposition (Kirby-Siebennman) top mfd Mn, n=5, admits a PL structure A ' its top tangent bundle admits a PL structure Equivariant (co-)homology: Borel construction $H_{G}^{*}(X; R) = H^{*}(Ea \times X; R)$ module over H*(BG; R)

S'-equivariant homology 下= 型/2世 $H^{*}(\mathbb{CP}^{\infty},\mathbb{F}) = \mathbb{F}[u]$ $S' \longrightarrow S^{\infty}$ deg U = 2 CP = BS $H_{*}^{s'}(X; F)$ module over F[u]is a principal ideal domain for field F Recall Any finitely generated module M over IF[4] (non-canonically) isomorphic to $\begin{array}{c} \stackrel{\mathsf{N}}{\bigoplus} & \mathbb{F}[\mathcal{U}] \oplus \bigoplus_{i=1}^{\mathsf{M}} & \mathbb{F}[\mathcal{U}] \\ j^{=1} & i^{=1} & (\mathfrak{e}_i) \end{array}$. . . i deal gen. by polynomicels N torsion parts free points Moreover, if M is graded, then each polynomial pi must be homogeneously graded ie.

Must be nomogeneously graded ie. $P_i = U^{m_i}$ for some m_i <u>Note</u>: $U^2 + U + 1$ is not homogenous. U^2 is.

Hence $M = \bigoplus_{j=1}^{N} \mathbb{F}_{j}[u] \oplus \bigoplus_{i=1}^{m} \mathbb{F}_{e_i}[u] / u^{m_i}$
where $\iint_{d} [U]$ denotes $\iint_{d} [U]$ where $gr 1 = d$.
$\frac{1}{2}$ convention to line up with the galard Floer conventions, from now, deg $U = -2$
Suppose $N=1$. Then we can define $d(m) = \max \{ gr(x) \mid x \in M, U^k x \neq 0 \forall k > 0 \}$
$\alpha(m) = m + 1 = j + j + j + k + k$
Example:
$M = \begin{array}{ccc} & & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
-b For k>D U ^k M is 1-dim

Pin(2)-equivariant homology $H^{*}(BPin(2), \mathbb{F}) = \mathbb{F}[Q, V]/Q^{3}$ deg Q=-1 * conventions deg V=-4 - eats a 3 mfd and outputs Pin(2) equiv. homology Seiberg-Witten Floer homology takeaway: this is a module over BG $SWFH_{*}^{Pin(Z)}(Y)$ module over $F[Q,V]/Q^{3}$ Note: $\mathbb{F}[Q,V]/Q^3$ not a P.I.D. eg. < Q, N> Not principal roughly picking out d invariant Manolescu proved that for N>>0 V^{N} . SWFH $\frac{Pin(2)}{*}(Y)$ is 3-dim ×, ×, ×, ×, ×, 3, $Q \times_3 = \times_2$ and Losing info on the torsion pieces $\mathbb{Q}_{1}^{2} \times_{3} = 1 \mathbb{Q} \times_{2} = 1 \times_{1}$

Define $A(Y) = \max \left\{ gr(x) \mid x \in SWFH_{*}^{Pin(2)}(Y) \right\}$ for $N \gg 0$, $V^{N} \times \neq 0$, and $\gamma^n \cdot x \in Im \mathbb{Q}^2$ $\frac{1}{2} \left(\frac{1}{2} \right)^{3}$ picking out the X, pourt because Q does not annihilate X2 or X3 $B(Y) = \max \left\{ gr(x) \right\} \times \in SWFH_{*}^{Pin(2)}(Y) \text{ for } N >> 0, V^{N} \cdot X \neq 0,$ $(2 \times 2^{N}) = 0$ $C(Y) = \max \left\{ gr(x) \mid x \in SWFH_{*}^{Pin(2)}(y) \text{ for } N >> 0, V^{N} \cdot x \neq 0, \right\}$ $(2 \times 3)^{\prime}$ $(2 \times 3)^{\prime}$ $(2 \times 3)^{\prime}$ $(2 \times 3)^{\prime}$ $(2 \times 3)^{\prime}$ $\beta = \frac{B-1}{2} \qquad \gamma = \frac{C-2}{2}$ <u>Renormalize</u> $d = \frac{A}{2}$ Theorem (Manolesou) 1. a, B, T are invariants of homology cobordism 2 Bmod 2 = Rokhlin invariant $\beta \beta(-\gamma) = -\beta(\gamma)$

SWFH + (Y) is closely related to involutive Heegaard Floer homology (Hendricks-Manolescu) a refinement of Heegdard Floer homology (Ozsváth-Szabó) Heegaard Floer and knot Floer homology have many applications to homology cobordism and knot concordance Heegaard Floer homology algebraic object given the "right kind" of input. ~invariant of 3-mfds, output Heegaard dragram H Chain $HF^{-}(74)$ complex $= H_{\ast}(CF^{-}(Y))$ for y CF-(74) Free, fin. gen. graded chain complex over IF[U] fin gen graded module over IF[4] deg U=-21 Remark: $HF^{-}(Y)$ isomorphic to S'-equivariant SWFH $_{*}^{s'}(Y)$ by work of Kutluhan-Lee-Taubes, Colin-ahiggini-Honda, Manolescu - Lidinan

$HF^{-}(Y) = \oplus HF^{-}(Y, s)$ sespin ^c (Y)
<u>Remark</u> : spin ^c (Y) $\leftarrow \overset{1:1}{\longrightarrow}$ H _i (Y; E) \cong H ² (Y; E)
Osváth-Stabó showed that for $Y \in \mathbb{R}HS^3$ $HF^{-}(Y,s) \cong F[U] \oplus \bigoplus_{i=1}^{m} F[U]/u^{ni} \forall s \in spin^{-}(Y)$
Some say Heegaard Floer hom is TQFT-like:
A cobordism $W: Y_0 \longrightarrow Y_1$ induces a module homomorphism $F_W: HF^-(Y_0) \longrightarrow HF^-(Y_1)$
Other Flavors:
s.e.s. $0 \longrightarrow \mathbb{F}[u] \longrightarrow \mathbb{F}[u] \longrightarrow \mathbb{F} \longrightarrow 0$
$0 \longrightarrow CF^{-}(H) \xrightarrow{hy} CF^{-}(H) \longrightarrow \widehat{CF}(H) \longrightarrow 0$
$\widehat{CF}(\mathcal{H})$ is obtained from $CF^{-}(\mathcal{H})$ by setting $\mathcal{U}=O$. * set $\mathcal{U}=O$ first and then take homology

$\widehat{HF}(Y) = H * (\widehat{CF}(Y))$	
weaker than HF (but s	ometimes easier to work with)
Example	
$CF^{-}(\mathcal{H}) = \langle x, y, z \rangle_{F[u]}$	
$\partial x = 0$ $\partial y = U = 0$ $\partial z = 0$	$\ker \partial = \langle \chi_i z \rangle$ $im \partial = \langle U z \rangle$
$H_{*}(CF^{-}(\mathcal{H})) \cong IF[\mathcal{U}] < \times 7 \oplus$	F<27
$\widehat{CF}(\mathcal{H}) = \langle x, y, z \rangle_{F}$ differential $\partial x = 0$ is same $\partial y = 0$ but set $u = 0$ $\partial z = 0$	$im = \langle 0 \rangle$ $im = \langle 0 \rangle$
$H_{*}(\widehat{CF}(\mathcal{H})) = \mathbb{F}^{3}$	
Exercise: Show that $HF(y)$ is (but not by just set	determined by $\mathrm{HF}^{-}(Y)$

$0 \longrightarrow IF[U] \longrightarrow IF[U, U'] \longrightarrow F[U, U'] \longrightarrow F[U, U'] \longrightarrow F[U]$
$0 \longrightarrow CF^{-}(\mathcal{H}) \longrightarrow CF^{-}(\mathcal{H}) \otimes_{F[\mathcal{U}]} F[\mathcal{U},\mathcal{U}^{-}] \longrightarrow CF^{+}(\mathcal{H}) \longrightarrow 0$ $\underset{Call HMS}{\longleftarrow} CF^{\infty}$
$HF^{+}(\gamma) = H_{*}(CF^{+}(\gamma))$
$HF^{\infty}(Y) = H_{*}(CF^{\infty}(Y))$ $L \text{ turns out that this invariant is fairly boing}$ $L \text{ if } Y \text{ QHS}^{3}, \text{ then } HF^{\infty}(Y,s) \cong HF[U,U^{-1}]$
Exercise: If Y QHS? show that HF+(Y) is determined by HF-(Y) (and vice versa) (coutain the same amount of info. in contrast to AF which contains oriently less. Flavors are more meful in dif. contexts.

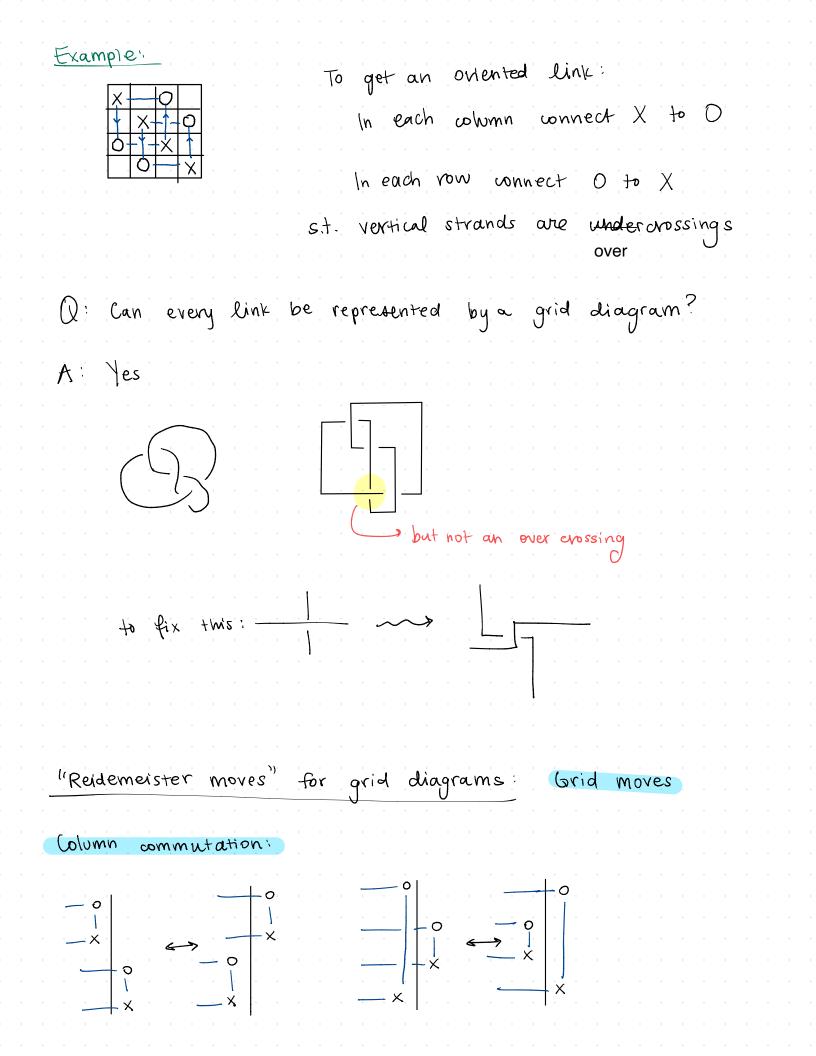
Notation :	CF°(7),	HF°(Y)	where	0 = -	⁄ ر− ر+	∧_ ∞				
			· · · · ·	ale	epend. Heeg	s on aard	ch	gram	of but	
Knots in	3-mfds	n	<u>.</u> .							
A null-how	iologous k	not K	in y	induces	ંગ	filt	ratio	ν		
on CF°(H			· · · · ·			ne.	y sted	fam	ily	•
⊆ F i-i	ę Fi g	Fit e				01	- 51	bcom	plexe	5
			· · · · ·							
the associate	d graded	comp/e	× is		· · ·					
	°(1, K)				· · · ·					
"(Hence" an o of notatio			· · · · ·		· · · ·					
knot Flo	er homol	94	· · · · ·		· · · ·					
HFK° (Y	, K) =	H_{\star}	P Fi/Fi		· · ·					
filtration gi m s = Alexander	res a 7 = homolog grading c	ical (M oning t	ing, so laslor) (from fi	s bigra grading Itration	ded L	· · · · · · · · · · · · · · · · · · ·				

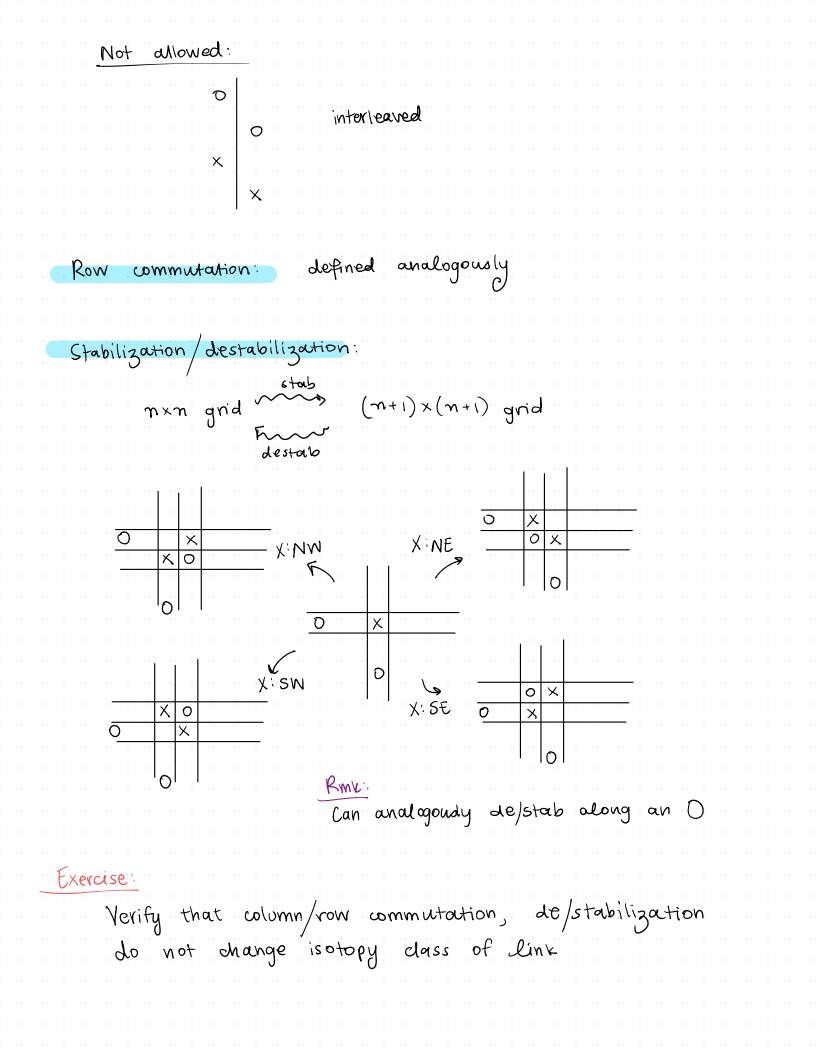
 $IF = \frac{\pi}{2}$ coefficients is bigraded HFK (Y, K) with vector space Theorem (Ozsváth - Szabó) $HFK(S^3, K)$ categorifies $\Delta_{\kappa}(t)$; $\Delta_{K}(t) = \sum_{m,s} (-1)^{m} t^{s} \dim \widehat{HFK}_{m}(K,s)$ Example: K=T2,3 m $HFK(T_{2,3})$ F FF F $\Delta_{T_{2},3}(t) = t' - 1 + t$ Exercise deg $\Delta_{k}(t)$ 5 g(K) deg $\Delta_{k}(t) = highest power$ symmetrized $Ex deg(t-1+t^{-1}) = 1$

(Ozsvath-Szabo) Theorem HFK detects genus, g(K) = max Es | HFK(K,s) = 0} you what genus of K is. 2 tells

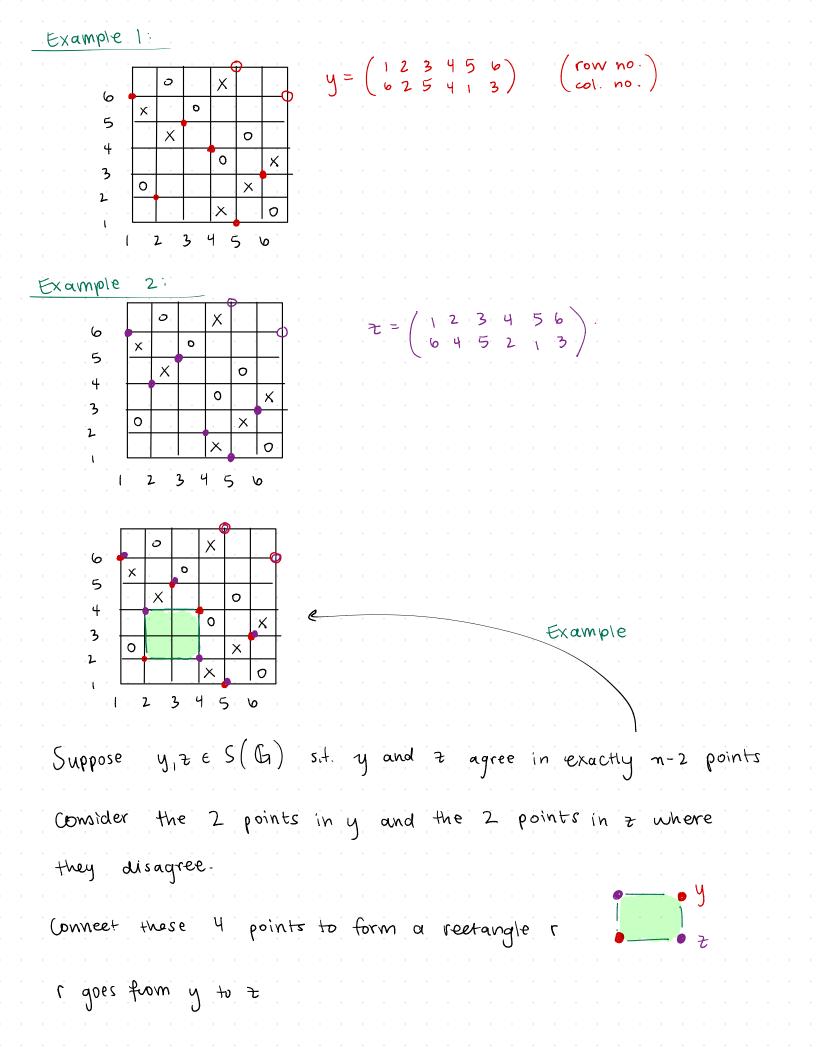
Last time: Heegaard Floer homology HF°(Y) Knot Floer homology HFK°(Y) HFK(Y) categorifies $\Delta_{k}(t)$ Alexander grading $\Delta_{k}(t) = \sum_{m,s} (-1)^{m} t^{s} dim HFK_{m}(K,s)$ shomological grading $\deg \Delta_{k}(t) \leq q(k)$ (Ozsváth-Szabó) Theorem HFK detects genus, $g(k) = \max \{s \mid HFK(k,s) \neq 0\}$ Example: HFK (T2,3) F - s IT le Euler chan is F Euler chan -1 Euler chay =1 in this column

defn: fibered if S³-K is a fiber bundle. A kenot K CS3 is over SI Exercise If K is fibered, then $\Delta_{k}(t)$ is monic Theorem (ahiggini, N;) HFK detects fiberedness K is fibered \iff HFK $(K, g(K)) \cong \mathbb{F}$ Cirid Homology -> Oszváth-Stipsicz-Szabó "and homology for Knots and Links" Defin: A planar grid diagram Gi is an mxm grid such that n squarees are marked with X's and n squares are marked with O's such that I Each column has exactly one O and one X 2. Each now has exactly one O and one X 3. No square has both an O and an X





Theorem (Cromwell) Two planar grid diagrams represent the same link they can be related by a finite sequence sequence of commutation and de/stabilizations Toroidal Grid Diagrams: cyclic permutations of 0 columns yields same knot Χ-Similarly for cyclic permut. of rows. Goal: Define a bigraded chain complex via toroidal grid diagram G whose homology is a knot invariant, and whose graded Euler char is $\Delta_k(t)$ S(G) = bijections between vertical circlesGrid states: and horizontal circle = Sn



y's are in NE, SW corners, called initial corners
Z's in NW, SE corners, called terminal corners
y, z e S(G)
Rect (y_1z) = set of rectangles from y to z
Note:
1.) $ \operatorname{Rect}(y_1 z) = \begin{cases} z & \text{if } y \text{ and } z \text{ agree in } n-2 \text{ points} \\ 0 & \text{otherwise} \end{cases}$ Recall toroidal, so l'outside "rect as well
2) Let $r \in Rect(y, b)$, then $y \cap Int(r) = z \cap Int(r)$ x = 0 x = 0
Defn: A rectangle $r \in \operatorname{Rect}(y_1 z)$ is empty if $y \cap \operatorname{Int}(r) = z \cap \operatorname{Int}(r) = \emptyset$
$Rect^{\circ}(y_{1}z) = set$ of empty rectangles from y to z

Bigrading on grid States	
$\rho = (\rho_1, \rho_2) \qquad q = (q_1, q_2)$	
define pcq if p, cq, and pz c	B ²
• °	
	• • • • • • • • • • • • • • • • • •
P 4 3	8≠ P
Defn: Let P and Q be finite collections	of points in \mathbb{R}^2
define $T(P,Q) = \# \{(p,g) \mid p \in P, g \in Q\}$, p ~ q }
$J(P,Q) = \frac{I(P,Q) + I(Q,P)}{2}$	
D = set of O's X = set of X's half integer coords	
y E S (G) integer coords	
fundamental domain [0,n) × [0,n)	

Defni	$M_{0}(y) = J(y,y) - 2J(y,D) + J(D, D) + 1$ = J(y-D, y-D) +1
	$M_{*}(y) = T(y - x, y - x) + 1$
<u>Defn</u>	Maslov grading $M(y) = M_{\Phi}(y)$ Alexander grading $A(y) = \frac{1}{2} \left(M_{\Phi}(y) - M_{X}(y) \right) - \frac{n-1}{2}$
Proposition	
well- folli	functions $M: S(G) \rightarrow \mathcal{F}$, $A: S(G) \rightarrow \mathcal{F}$ are -defined. Moreover, M is characterized by the owing two properties: et y NWO be the grid state consisting of the upper left privers of the O squares, then $M(y^{NWO}) = O$
2 1	$\frac{1}{2} \operatorname{Rect}(y_{1}z) \neq 0,$ then $M(y) - M(z) = 1 - 2\# \{r \cap D\} + 2\# \{y \cap \operatorname{Int}(r)\}$
Np to a re Rect Aly)-	n overall additive constant, M is characterized by (y_1z) $A(z) = \# \{r \cap X\} - \# \{r \cap D\}$

The fully blocked grid chain complex: $G(G) = bigraded chain complex over <math>F = \frac{\pi}{2\pi}$ generated by S(G) $\mathcal{P}_{\mathcal{D},\mathcal{X}}(y) = \sum_{z \in S(G_{n})} \# \{ r \in \operatorname{Rect}(y_{1}z) \mid r \cap X = r \cap D = \emptyset \} \cdot z$ shows up often. $\operatorname{Rect}^{\circ}_{\mathcal{D},X}(y_1z)$ Exercise 30,X lowers Maslov grading by I and preserves Alexander grading Define: $GH(G) = H_*(GC(G))$ Exercises: GH(G) GH(G) F these are toroidal Show that at (G) 2. ₽² Ŧ

GH(G) is not a knot invariant! However, Theorem : Let (I be an nxn toroidal grid diagram for K. 2-dim vector space Let w be the F Then I a bigraded vector space GH(G) = HFK(K) s.t. $-\widehat{\mathrm{LH}}(\mathbb{G})\cong\widehat{\mathrm{LH}}(\mathbb{G})\otimes \mathbb{W}^{\otimes n-1}$ 2. at ((b) is a knot invariant